

List of modules for the Master's degree programme Computational and Applied Mathematics for the summer semester 2021

Not all of the listed modules are offered annually. On the other hand, additional modules may be offered.

Department of Mathematics Friedrich-Alexander-Universität Erlangen-Nürnberg

Last updated:June 01, 2021Reference:Examination regulations dated Feb 27, 2017

Table of contents

Module 2: ModAna2: Modeling and Analysis in Continuum Mechanics II	5
Module 3: Modeling, Simulation, Optimization (Practical Course)	7
Module 4: PTfS-CAM: Programming Techniques for Supercomputers in CAM	9
Module 6a: MaSe: Master's seminar MApA	11
Module 6b: MaSe: Master's seminar NASi	12
Module 6c: MaSe: Master's seminar Opti	13
Module 7: Master's Thesis	14
Module 11: RTpMMod: Transport and Reaction in Porous Media: Modeling	15
Module 13: NuIF1: Numerics of Incompressible Flows I	17
Module 14: NuIF2: Numerics of Incompressible Flows II	19
Module 16: MaDS: Mathematical Data Science 1	21
Module 18: MaMM: Mathematics of Multiscale Models	22
Module 27: MSOpt: Introduction to Material and Shape Optimization	23
Module 30: RobOpt II: Robust Optimization II	25
Module 31: NALIP: Numerical Aspects of Linear and Integer Programming	27
Module 34: DiscOpt II: Discrete Optimization II	
Module 39: NumPDE II: Numerics of Partial Differential Equations II	30
Free elective module: A primer on functional-analytic methods for PDEs	32

Dean of Studies (General questions about the programme)

Prof. Dr. Friedrich Knop

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstr.11, 91058 Erlangen, Room 01.321 Phone: +49 9131 8567021 E-mail: knop@math.fau.de

Examination Committee for Bachelor's and Master's degree courses in Mathematics (Examination matters for the programme)

Prof. Dr. Eberhard Bänsch

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstrasse 11, 91058 Erlangen, Room 04.323

Phone: +49 9131 8567202, E-mail: baensch@am.uni-erlangen.de

Degree programme manager

Prof. Dr. Günther Grün

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstrasse 11, 91058 Erlangen, Room 04.343

Phone: +49 9131 8567220 E-mail:gruen@math.fau.de

Degree programme administration (Procedures and organisation)

Prof. Dr. Serge Kräutle

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstrasse 11, 91058 Erlangen, Room 04.337

Phone: +49 9131 85 67213 E-mail:kraeutle@math.fau.de

Subject advisor

Prof. Dr. Serge Kräutle

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstrasse 11, 91058 Erlangen, Room 04.337 Phone: +49 9131 85 67213 E-mail:kraeutle@math.fau.de

Student Service Centre

Christine Gräßel, M. A.

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstrasse 11, 91058 Erlangen, Room 01.385

Phone: +49 9131 8567024, E-mail:ssc@math.fau.de

1	Module name	Module 2: ModAna2: Modeling and Analysis in Continuum Mechanics II	ECTS 5
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Exercises: 0.5 semester hrs/week	МАрА
3	Lectures	Prof. Dr. Enrique Zuazua <u>enrique zuazua@fau.de</u> Nicola De Nitti <u>nicola.de.nitti@fau.de</u>	
4	Module coordinator	Prof. Dr. G. Grün gruen@math.fau.de	
5	Content	 At least two of the following three topics: Monotone operators and applications in continuum mechanics, e.g. shear-thinning liquids, Mathematical concepts of model reduction: homogenization, gamma convergence, asymptotic analysis, Reaction diffusion models from biology and social sciences; Models in fluid dynamics (compressible and incompressible Navier-Stokes equations); Wave phenomena and other hyperbolic equations in continuum mechanics 	
6	Learning objectives and skills	 Students can: derive mathematical models for several important applications in continuum mechanics. apply analytical techniques to rigorously prove qualitative properties of solutions. 	
7	Prerequisites	Recommended: Modeling and Analysis in Continuum Mechanics I	
8	Integration into curriculum	2nd semester	
9	Module compatibility	Mandatory module for MSc in Computational and Applied Mathematics Mandatory elective module for MSc in Mathematics in the fields of "Modeling, Simulation and Optimization" and "Analysis and Stochastics"	
10	Method of examination	oral examination (20 minutes)	
11	Grading Procedure	100% based on Oral examination	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 35 hrs Independent study: 115 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	

		A. Braides: Gamma-convergence for beginners, Oxford University Press,
		D. Cioranescu & P. Donato: An introduction to homogenization, Oxford
		University Press,
		L.C. Evans. (2010). Partial differential equations. AMS.
		• T.A. Roberts (1994). A one-dimensional introduction to continuum
16	Recommended reading	mechanics. World Scientific.
	_	• R.E. Showalter: Monotone operators in Banach space and nonlinear
		partial differential equations, AMS
		• T. Temam and A. Miranville (2005). Mathematical modeling in
		continuum mechanics. Cambridge University Press.
		Handouts and lecture notes distributed via StudOn.

1	Module name	Module 3: MoSi: Modeling, Simulation, Optimization (Practical Course)	ECTS 5	
2	Courses/lectures	Seminar: 3 semester hrs/week	MApA/NASi/Opti	
3	Lectures	Prof. Dr. Enrique Zuazua enrique.zuazua@fau.de Dr. Daniël Veldman daniel.veldman@math.fau.de		
4	Module coordinator	Prof. Dr. Martin Burger martin.burger@fau.de		
5	Content	 engineering or the natural sciences Numerical algorithms for partial differential equation n differences, finite elements, etc) Continuous optimization and optimal control 	 engineering or the natural sciences Numerical algorithms for partial differential equation models (finite differences, finite elements, etc) 	
6	Learning objectives and skills	 Students work on problems in engineering or the natural sciences by constructing a suitable mathematical model, are able to simulate, analyze, and/or optimize the constructed mathematical model using numerical methods, are able to implement processes using their own or specified software and critically evaluate the results, are able to set out their approaches and results in a comprehensible and convincing manner, making use of appropriate presentation techniques, are able to develop and set out in writing the theories and problem solutions they have developed. 		
7	Prerequisites	Recommended: Modeling and Analysis in Continuum Mechanics	I	
8	Integration into curriculum	2nd semester		
9	Module compatibility	Compulsory module for MSc in Computational Applied Mathema Mandatory elective module for MSc in Mathematics in the field of Simulation and Optimization"		
10	Method of examination	Weekly hand in assignments. Final project.		
11	Grading Procedure	Hand in assignments 20% Final project 80%		
12	Module frequency	Summer semester (annually)		
13	Workload	Contact hours: 42 hrs Independent study: 108 hrs Total: 150 hrs, corresponding to 5 ECTS credits		
14	Module duration	One semester		
15	Teaching and examination language	English		

16	Recommended reading	Project-dependent. Will be published on StudOn at the beginning of the semester.
----	---------------------	--

1	Module name	Module 4: PTfS-CAM: Programming Techniques for Supercomputers in CAM	ECTS 10
2	Courses/lectures	a) Lectures: 4 semester hrs/week b) Practical: 2 semester hrs/week	
3	Lecturers	Prof. Dr. Gerhard Wellein Gerhard.Wellein@rrze.uni-erlangen.de	
4	Module coordinator	Prof. Dr. Gerhard Wellein Gerhard.Wellein@rrze.uni-erlangen.de	
5	Content	Introduction to the architecture of modern supercomputers Single core architecture and optimisation strategies Memory hierarchy and data access optimization Concepts of parallel computers and parallel computing Efficient "shared memory" parallelisation (OpenMP) Parallelisation approaches for multi-core processors including GPUs Efficient "distributed memory" parallelisation (MPI) Roofline performance model Serial and parallel performance modelling Complete parallel implementation of a modern iterative Poisson solver	
6	Learning objectives and skills	 Students acquire a comprehensive overview of programming modern supercomputers efficiently for numerical simulations, learn modern optimisation and parallelisation strategies, guided by structured performance modelling, acquire an insight into innovative programming techniques and alternative supercomputer architectures, are able to implement numerical methods to solve partial differential equations (PDEs) with finite difference (FD) discretization with high hardware efficiency on parallel computers. 	
7	Prerequisites	Recommended: Experience in C/C++ or Fortran programming; basic knowledge of M OpenMP programming	PI and
8	Integration into curriculum	2nd semester	
9	Module compatibility	Compulsory module for MSc Computational and Applied Mathemati	CS
10	Method of examination	oral exam (30 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 120 hrs Independent study: 180 hrs Total: 300 hrs, corresponding to 10 ECTS credits	
14	Module duration	One semester	

15	Teaching and examination language	English
16	Recommended reading	 G. Hager & G. Wellein: Introduction to High Performance Computing for Scientists and Engineers. CRC Computational Science Series, 2010. ISBN 978-1439811924 J. Hennessy & D. Patterson: Computer Architecture. A Quantitative Approach. Morgan Kaufmann Publishers, Elsevier, 2003. ISBN 1-55860-724-2

1	Module name	Module 6a: MaSe: Master's seminar MApA	ECTS 5
2	Courses/lectures	"Mathematical Modeling and Data Analysis"	
3	Lecturers	Prof. Dr. Burger <u>martin.burger@fau.de</u>	
4	Module coordinator	Prof. Dr. Günther Grün gruen@math.fau.de	1
5	Content	A topic from MApA that relates to the compulsory elective modules	offered.
6	Learning objectives and skills	 Students can use original literature to familiarise themselves with a current research topic, can structure the content acquired both verbally and in writing and make their own contributions to its presentation and/or substance, learn scientific content on the basis of academic lectures and actively discuss it at a plenary session. For the MApA specialisation: make use of analytical techniques to rigorously prove the qualitative characteristics of solutions to mathematical models in applied sciences. 	
7	Prerequisites	All compulsory modules for the MSc in Computational and Applied Mathematics recommended	
8	Integration into curriculum	3rd semester	
9	Module compatibility	Compulsory module for MSc in Computational and Applied Mathematics Compulsory module for MSc in Mathematics Compulsory module for MSc in Mathematics and Economics	
10	Method of examination	talk/presentation (90 minutes) and handout (5-10 pages)	
11	Grading Procedure	talk/presentation 75% handout 25%	
12	Module frequency	Winter semester (annually)	
13	Workload	Contact hours: 30 hrs Independent study: 120 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	Depending on topic. Will be published on StudOn at the beginning o semester.	f the

1	Module name	Module 6b: MaSe: Master's seminar NASi	ECTS 5	
2	Courses/lectures	"Mathematical Modeling and Data Analysis"		
3	Lecturers	Prof. Dr. Burger martin.burger@fau.de		
4	Module coordinator	Prof. Dr. Eberhard Bänsch <u>baensch@math.fau.de</u>		
5	Content	A topic from NASi that relates to the compulsory elective modules of	offered.	
6	Learning objectives and skills	 Students can structure the content acquired both verbally and in writing and make their own contributions to its presentation and/or substance, learn scientific content on the basis of academic lectures and actively discuss it at a plenary session. For the NASi specification: can solve exemplary computational problems with given or self-developed software in order to illustrate or verify numerical methods under consideration. 		
7	Prerequisites	All compulsory modules for the MSc in Computational and Applied N recommended	All compulsory modules for the MSc in Computational and Applied Mathematics recommended	
8	Integration into curriculum	3rd semester		
9	Module compatibility	Compulsory module for MSc in Computational and Applied Mathematics Compulsory module for MSc in Mathematics Compulsory module for Msc in Mathematics and Economics		
10	Method of examination	talk/presentation (90 minutes) and handout (5-10 pages)		
11	Grading Procedure	talk/presentation 75% handout 25%		
12	Module frequency	Winter semester (annually)		
13	Workload	Contact hours: 30 hrs Independent study: 120 hrs Total: 150 hrs, corresponding to 5 ECTS credits		
14	Module duration	One semester		
15	Teaching and examination language	English		
16	Recommended reading	Depending on topic. Will be published on StudOn at the beginning o semester.	f the	

1	Module name	Module 6c: MaSe: Master's seminar Opti	ECTS 5
2	Courses/lectures		
3	Lecturers		
4	Module coordinator	Prof. Dr. Michael Stingl michael.stingl@fau.de	
5	Content	A topic from Opti that relates to the compulsory elective modules offered.	
6	Learning objectives and skills	 Students can use original literature to familiarise themselves with a current research topic, can structure the content acquired both verbally and in writing and make their own contributions to its presentation and/or substance, learn scientific content on the basis of academic lectures and actively discuss it at a plenary session. For the Opti specialisation: model theoretical and applied tasks as optimization problems and/or develop optimization algorithms for their solution and/or put these into practice. 	
7	Prerequisites	All compulsory modules for the MSc in Computational and Applied Mathematics recommended	
8	Integration into curriculum	3rd semester	
9	Module compatibility	Compulsory module for MSc in Computational and Applied Mathematics Compulsory module for MSc in Mathematics Compulsory module for MSc in Mathematics and Economics	
10	Method of examination	talk/presentation (90 minutes) and handout (5-10 pages)	
11	Grading Procedure	talk/presentation 75% handout 25%	
12	Module frequency	Winter semester (annually)	
13	Workload	Contact hours: 30 hrs Independent study: 120 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	Depending on topic. Will be published on StudOn at the beginning o semester.	f the

1	Module name	Module 7: Master's Thesis	ECTS 25
2	Courses/lectures	Oral examination Master's Thesis	
3	Lectures	The lecturers for the degree programme in Computational and Applied Mathematics	MaPA/NASI/Opti
4	Module coordinator	Prof. Dr. Günther Grün gruen@math.fau.de	
5	Content	The master's thesis is in the field of Modelling and Analysis, or No and Simulation, or Optimization, and deals with a current researc	-
6	Learning objectives and skills	Students are capable of independently follow up a scientific question in the fields of "Modelling and Analysis", "Numerical Analysis and Simulation" or "Optimization" over an extended, specified period, develop original ideas and concepts for solving scientific problems in these fields, apply and improve mathematical methods rather independently - also in unfamiliar and interdisciplinary contexts, present and explain mathematical or interdisciplinary contents clearly in a manner appropriate for the target audience, both in writing and orally, improve their ability to plan and structure by implementing a thematic project.	
7	Prerequisites	Successful participation in all mandatory modules (35 ECTS) and a from mandatory elective modules	at least 20 ECTS
8	Integration into curriculum	4th semester	
9	Module compatibility	Master's degree programme in Computational and Applied Math	ematics
10	Method of examination	Master's thesis (scope according to examination regulations) Oral exam (15 minutes)	
11	Grading Procedure	90% Master's thesis 10% Oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 15 hrs Independent study: 735 hrs Total: 750 hrs, corresponding to 25 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	Individual, depending on topic of Master's Thesis.	

1	Module name	Module 11: RTpMMod: Transport and Reaction in Porous Media: Modeling	ECTS 5
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 0,5 semester hrs/week	МАрА
3	Lectures	Prof. Dr. Serge Kräutle kraeutle@math.fau.de	
4	Module coordinator	Prof. Dr. Serge Kräutle kraeutle@math.fau.de	
5	Content	 Modeling of fluid flow through a porous medium: Groundwater models (Richards' equation), multiphase flow Advection, diffusion, dispersion of dissolved substances, (nonlinear) reaction-models (i.a. law of mass action, adsorption, kinetic / in local equilibrium, reactions with minerals) Models of partial (PDEs), ordinary (ODEs) differential equations, and local conditions Nonnegativity, boundedness, global existence of solutions, necessary model assumptions in the case of a pure ODE model as well as for a PDE model Existence of stationary solutions (i.a. introduction to the Feinberg network theory) 	
6	Learning objectives and skills	 Students are able to model flow and reaction processes in porous media on macro- and micro-scale using partial differential equations, possess the techniques and the analytical foundations to assess the global existence of solutions. 	
7	Prerequisites	Recommended: Basic knowledge in differential equations	
8	Integration into curriculum	2nd semester	
9	Module compatibility	 Mandatory elective module: MSc. Computational and Applied Mathematics MSc Mathematics with field of "Modelling, Simulation, an Optimization" Non-physical elective module: MSc Physics 	d
10	Method of examination	Oral exam (20 minutes)	
11	Grading Procedure	100% Oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	

		S. Kräutle: lecture notes
		https://www.math.fau.de/kraeutle/vorlesungsskripte/
16	Recommended reading	C. Eck, H. Garcke, P. Knabner: Mathematical Modeling, Springer
16	Recommended reading	• J.D. Logan: Transport Modeling in Hydrogeochemical Systems, Springer
		M. Feinberg: lecture notes
		 crnt.osu.edu/LecturesOnReactionNetworks

1	Module name	Module 13: NuIF1: Numerics of Incompressible Flows I	ECTS 5	
2	Courses/lectures	a) Lecture: 2 semester hrs/week b) Practical: 0.5 semester hrs/week	NASi	
3	Lectures	Dr. Stefan Metzger <u>metzger@math.fau.de</u>		
4	Module coordinator	Prof. Dr. Eberhard Bänsch <u>baensch@math.fau.de</u>		
5	Content	 Mathematical modelling of (incompressible) flows Variational formulation, existence and (non-)uniqueness of solutions to the stationary Navier-Stokes (NVS) equations Stable finite element (FE) discretization of the stationary (Navier-) Stokes equations Error estimates Solution techniques for the saddle point problem 		
6	Learning objectives and skills	 Students explain and apply the mathematical theory for the stationary, incompressible Navier-Stokes equations, analyse FE discretization for the stationary Stokes equations and apply them to practical problems, explain the meaning of the inf-sup condition, choose the appropriate function spaces, stabilisation techniques and solution techniques and apply them to concrete problem settings. 		
7	Prerequisites	Recommended: Advanced discretization techniques		
8	Integration into curriculum	2nd semester	2nd semester	
9	Module compatibility	Mandatory elective module for MSc in Computational and Applied I in the field of "Modeling, Simulation and Optimization"	Vathematics	
10	Method of examination	oral exam (20 minutes)		
11	Grading Procedure	100% based on oral examination		
12	Module frequency	summer semester (annually)		
13	Workload	Contact hours:37.5 hrsIndependent study:112.5 hrsTotal:150 hrs, corresponding to 5 ECTS credits		
14	Module duration	one semester		
15	Teaching and examination language	English		

		• V. Girault1 & PA. Raviart: Finite element methods for the Navier-Stokes equations. Theory and algorithms. Springer 1986
16	Recommended reading	 H. Elman, D. Silvester & A. Rathen: Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Oxford University Press 2014
		 R. Temam: Navier-Stokes equations. Theory and numerical analysis. North Holland

1	Module name	Module 14: NuIF2: Numerics of Incompressible Flows II	ECTS 5
2	Courses/lectures	a) Lecture: 2 semester hrs/week b) Practical: 0.5 semester hrs/week	
3	Lecturers	Prof. Dr. Eberhard Bänsch <u>baensch@math.fau.de</u>	NASi
4	Module coordinator	Prof. Dr. Eberhard Bänsch <u>baensch@math.fau.de</u>	
5	Content	 Variational formulation of the instationary Stokes and Navie (NVS) equations Existence and uniqueness of solutions to the instationary Stokes NVS equations Time discretisation methods Fully discrete equations and error estimates Solution techniques Operator splitting, projection methods More general boundary conditions Coupling of NVS with temperature equation Computational experiments with academic or commercial or 	tokes and
6	Learning objectives and skills	 Students discretize the instationary NVS equations in time and space, explain and analyse discretisation schemes and operator splitting techniques, choose appropriate algorithms for given flow problems and solve them with academic or commercial software. 	
7	Prerequisites	Recommended: Advanced discretization techniques, Numerics of incompressible flo	ws I
8	Integration into curriculum	3rd semester	
9	Module compatibility	 Mandatory elective module for MSc in Computational and Mathematics Mandatory elective module for MSc in Mathematics in the "Modeling, Simulation and Optimization" 	
10	Method of examination	oral exam (15 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Winter semester (annually)	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	

15	Teaching and examination language	English
16	Recommended reading	 V. Girault & PA. Raviart: Finite element methods for the Navier-Stokes equations. Theory and algorithms. Springer 1986 H. Elman, D. Silvester & A. Rathen: Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Oxford University Press 2014 R. Glowinski: Finite Element Methods for Incompressible Viscous Flow, in : Handbook of Numerical Analysis vol. IX R. Temam: Navier-Stokes equations. Theory and numerical analysis. North Holland

1	Module name	Module 16: MaDS: Mathematical Data Science 1	ECTS 5	
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 1/2 semester hrs/week	NASi	
3	Lecturers	Dr. Leon Bungert leon.bungert@fau.de Dr. Daniel Tenbrinck daniel.tenbrinck@fau.de		
4	Module coordinator	Prof. Dr. Martin Burger martin.burger@fau.de		
5	Content	 Clustering and Classification Models Machine learning: empirical risk minimization, kernel methods, and variational models Ranking problems Mathematical models of graph structured data 		
6	Learning objectives and skills	 Students develop understanding of modern big data and state of the art methods to analyze them, apply state of the art algorithms to large data sets, derive models for network / graph structured data. 		
7	Prerequisites	Recommended: basic knowledge in numerical methods and optimization		
8	Integration into curriculum	2 nd or 4 th semester		
9	Module compatibility	Mandatory elective module for MSc in Computational and Applied Mathematics Mandatory elective module for MSc in Mathematics in the field of "Modeling, Simulation and Optimization"		
10	Method of examination	Project work with presentation and report		
11	Grading Procedure	50 % presentation and 50 % report		
12	Module frequency	Summer semester (not annually) To check whether the course is offered in the current semester, see univis.fau.de or the module handbook of the current semester	UnivIS	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits		
14	Module duration	One semester		
15	Teaching and examination language	English		
16	Recommended reading		• T. Hastie, R. Tibshirani, J. Friedman: The Elements of Statistical	

1	Module name	Module 18: MaMM: Mathematics of Multiscale Models	ECTS 5
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 0,5 semester hrs/week	МАрА
3	Lecturers	PD Dr. Nicolas Neuß neuss@math.fau.de	
4	Module coordinator	PD Dr. Nicolas Neuß neuss@math.fau.de	
5	Content	 Function spaces of periodic functions and asymptotic expansions Two-scale convergence and unfolding method Application to differential equation models in continuum mechanics Multi-scale finite element methods Numerical upscaling methods 	
6	Learning objectives and skills	 Students have profound expertise about the basic methods in multi-scale analysis and homogenisation, are able to derive rigorously homogenised (effective) models and analyse the quality of the approximation. 	
7	Prerequisites	Recommended: Knowledge in modeling as well as analysis and numerics of partial differential equations	
8	Integration into curriculum	3 rd semester	
9	Module compatibility	 Mandatory elective module for MSc in Computational and Applied Mathematics Mandatory elective module for MSc in Mathematics in the field of "Modeling, Simulation and Optimization" 	
10	Method of examination	Oral exam (20 minutes)	
11	Grading Procedure	100% Oral exam	
12	Module frequency	At least once every two years To check whether the course is offered in the current semester, see univis.fau.de	e UnivIS:
13	Workload	Contact hours: 37,5 hrs Independent study: 112,5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	 D. Cioranescu & P. Donato: An Introduction to Homogeniza U. Hornung (ed.): Homogenization and Porous Media Y. Efendiev & T. Hou: Multiscale Finite Element Methods 	ation

1	Module name	Module 27: MSOpt: Introduction to Material and Shape Optimization	ECTS 10
2	Courses/lectures	a) Lectures: 4 semester hrs/week b) Practical: 1 semester hr/week	Opti
3	Lecturers	Prof. Dr. Michael Stingl michael.stingl@fau.de	
4	Module coordinator	Prof. Dr. Michael Stingl michael.stingl@fau.de	
5	Content	 shape-, material- and topology optimization models linear elasticity and contact problems existence of solutions of shape, material and topology optimization problems approximation of shape, material and topology optimization problems by convergent schemes 	
6	Learning objectives and skills	 Students derive mathematical models for shape-, material and topology optimization problems, apply regularization techniques to guarantee to existence of solutions, approximate design problems by finite dimensional discretizations, derive algebraic forms and solve these by nonlinear programming techniques. 	
7	Prerequisites	 Recommended: Knowledge in nonlinear optimization, Basic knowledge in numerics of partial differential equation 	ns
8	Integration into curriculum	2nd semester	
9	Module compatibility	 Mandatory elective module for MSc Computational and Applie Mathematics Mandatory elective module for MSc Mathematics in the fields "Modeling, Simulation and Optimization" Mandatory elective module for MSc Mathematics and Econom fields of study "Optimization and Process Management" 	of
10	Method of examination	oral exam (20 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 75 hrs Independent study: 225 hrs Total: 300 hrs, corresponding to 10 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	

16	Recommended reading	 J. Haslinger & R. Mäkinen: Introduction to shape optimization, SIAM, M. P. Bendsoe & O. Sigmund: Topology Optimization: Theory, Methods and Applications, Springer.
----	---------------------	--

1	Module name	Module 30: RobOpt II: Robust Optimization II	ECTS 5	
2	Courses/lectures	a) Lectures: 2 weekly lecture hours b) Practical: 1 weekly lecture hour	Opti	
3	Lecturers	Dr.Jan Rolfes jan.rolfes@fau.de		
4	Module coordinator	Prof. Dr. Frauke Liers frauke.liers@math.uni-erlangen.de		
5	Content	 In practice, provided data for mathematical optimization problems is often not fully known. Robust optimization aims at finding the best solution which is feasible for input data varying within certain tolerances. The lecture covers advanced methods of robust optimization in theory and modeling. In particular, robust network flows, robust integer optimization and robust approximation are included. Further, state-of-the-art concepts, e.g., "light robustness" or "adjustable robustness" will be discussed by means of real-world applications. 		
6	Learning objectives and skills	 Students will be able to identify complex optimization problems under uncertainties as well as suitably model and analyze the corresponding robust optimization problem with the help of advanced techniques of robust optimization, learn the handling of appropriate solving techniques and how to analyze the corresponding results. 		
7	Prerequisites	Recommended: Robust Optimization I		
8	Integration into curriculum	2nd semester		
9	Module compatibility	 Mandatory elective module for MSc Computational and Applied Mathematics, Mandatory elective module for MSc Mathematics in the field of study "Modelling, Simulation and Optimization" Mandatory elective module for the MSc in Mathematics and Economics in the field of study "Optimization and process management" 		
10	Method of examination	oral exam (15 minutes)		
11	Grading Procedure	100% based on oral exam		
12	Module frequency	Summer semester (not annually) To check whether the course is offered in the current semester, see UnivIS univis.fau.de or module handbook of current semester		
13	Workload	Total: 150 h Attendance: 45 h Self-study: 105 h 		
14	Module duration	1 semester		
15	Teaching and examination language	English		

16	Recommended reading	 Lecture notes, will be published on StudOn at the beginning of the semester.
----	---------------------	--

1	Module name	Module 31: NALIP: Numerical Aspects of Linear and Integer Programming	ECTS 5
2	Courses/lectures	a) Lectures: 2 weekly lecture hours b) Practical: 0.5 weekly lecture hour	Opti
3	Lecturers	Dr. Andreas Bärmann andreas.baermann@math.uni-erlangen.de	
4	Module coordinator	Prof. Dr. Alexander Martin alexander.martin@fau.de	
5	Content	 Revised Simplex (with bounds) Simplex Phase I Dual Simplex LP Presolve/Postsolve Scaling MIP Solution Techniques 	
6	Learning objectives and skills	Students are able to explain and use methods and numerical approaches for solving linear and mixed-integer programs in practice.	
7	Prerequisites	Knowledge in linear algebra and combinatorial optimization is recommended.	
8	Integration into curriculum	2nd semester	
9	Module compatibility	 Mandatory elective module for MSc Computational and Applied Mathematics Mandatory elective module for MSc Mathematics in the field of "Modeling, Simulation and Optimization" Mandatory elective module for MSc Mathematics and Economics in the fields of "Optimization and Process Management" 	
10	Method of examination	oral exam (15 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Summer semester (not annually) To check whether the course is offered, see UnivIS univis.fau.de or handbook of current semester	module
13	Workload	Attendance: 45 h Self-study: 105 h	
14	Module duration	1 semester	
15	Teaching and examination language	English	
16	Recommended reading	 V. Chvátal: Linear Programming, W. H. Freeman and Company, New York, 1983 L.A. Wolsey: Integer Programming, John Wiley and Sons, Inc., 1998 	

1	Module name	Module 34: DiscOpt II: Discrete Optimization II	ECTS 10
2	Courses/lectures	a) Lectures: 4 weekly lecture hours b) Practical: 2 weekly lecture hour	
3	Lecturers	Prof. Dr. Alexander Martin <u>alexander.martin@fau.de</u>	
4	Module coordinator	Prof. Dr. Alexander Martin alexander.martin@fau.de	
5	Content	In this lecture we cover theoretical aspects and solution strategies f integer and mixed-integer optimization problems. First, we point equivalence between separation and optimization. Second, funda results of integral polyhedra, lattices and lattice polyhedra as well importance to discrete optimization are discussed. Furthermore, solution strategies for large-scale optimization problems, e.g., dec methods or approximation algorithms and heuristics based on lin programming. In addition, we discuss applications arising in engin finance, energy management or public transport.	out the Imental as its we introduce composition ear
6	Learning objectives and skills	 Students use basic terms of discrete optimization model real-world discrete optimization problems, determine complexity and solve them with appropriate mathematical 	
7	Prerequisites	Recommended: Knowledge in linear and combinatorial optimization, discrete optimization I	
8	Integration into curriculum	2nd semester	
9	Module compatibility	Mandatory elective module for MSc Computational and Applied Ma Elective module for MSc Mathematics, Elective module for MSc Mathematics and Economics, Core/research module MSc Mathematics within "Modeling, simulat optimization", MSc Mathematics and Economics within "Optimiza process management"	ion,
10	Method of examination	oral exam (20 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Attendance: 90 h Self-study: 210 h	
14	Module duration	1 semester	
15	Teaching and examination language	English	

16	Recommended reading	Lecture notes D. Bertsimas & R. Weismantel: Optimization over Integers, Dynamic Ideas, 2005 Conforti, Cornuéjols & Zambelli: Integer Programming, Springer 2014 G. L. Nemhauser & L.A. Wolsey: Integer and Combinatorial Optimization, Wiley 1994
		A. Schrijver: Combinatorial optimization Vol. A - C, Springer 2003 A. Schrijver: Theory of Linear and Integer Programming, Wiley, 1986 L.A. Wolsey: Integer Programming, Wiley

1	Module name	Module 39: NumPDE II: Numerics of Partial Differential Equations II	ECTS 5
2	Courses/lectures	a) Lecture: 2 semester hrs/week b) Practical: 1 semester hr/week	NASi
3	Lecturers	Prof. Dr. Eberhard Bänsch <u>baensch@math.fau.de</u>	
4	Module coordinator	Prof. Dr. Günther Grün gruen@math.fau.de	
5	Content	 Classical and weak theory for linear parabolic initial-bour problems (IBVPs) (outline), finite-element method (FEM) for 2nd-order linear parabolic (semi-discretisation in space, time discretisation by one-stability, comparison principles, order of convergence), FEM for semi-linear elliptic and parabolic equations (fixed Newton-methods, secondary iterations), higher-order time discretisation, extrapolation, time-step 	blic IVBPs Step methods, d-point- and
6	Learning objectives and skills	 Students apply algorithmic approaches for models with partial diffequations and explain and evaluate them, are capable to judge on a numerical method's properties stability and efficiency, implement (with own or given software) numerical methor critically evaluate the results, explain and apply a broad spectrum of methods with a foc conforming finite element methods for parabolic problem these approaches also to nonlinear problems, collect and evaluate relevant information and realize relations. 	regarding ods and ocus on ns, extending
7	Prerequisites	Recommended: basic knowledge in numerics and numerics of pde	
8	Integration into curriculum	2nd semester	
9	Module compatibility	 Mandatory elective module for MSc in Computational an Mathematics Mandatory elective module for BSc Mathematics Mandatory module for BSc Technomathematik Non-Physics elective module for MSc Physics 	d Applied
10	Method of examination	written exam (90 minutes) with exercises	
11	Grading Procedure	100% based on written exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 45 hrs Independent study: 105 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	

15	Teaching and examination language	English
16	Recommended reading	 P. Knabner, L. Angermann, Numerical Methods for Elliptic and Parabolic Partial Differential Equations, Springer, New York, 2003. S. Larsson, V. Thomée, Partial Differential Equations with Numerical Methods, Springer, Berlin, 2005.

1	Module name	Free elective module: A primer on functional-analytic methods for PDEs	ECTS 5
2	Courses/lectures	Lectures: 2 semester hrs/week Exercises: 0,5 semester hrs/week	MApA/NASi/Opti
3	Lecturers	Prof. Dr. Hannes Meinlschmidt	
4	Module coordinator	Prof. Dr. G. Grün gruen@math.fau.de	
5	Content	 Basics and foundations in the following topics: Banach and Hilbert spaces, dual spaces and weak topology, compact operators, their spectral theory, Sobolev spaces, approximation and trace theorems variational formulation of PDEs, Sobolev solutions to linear elliptic PDEs (Lax-Milgram/Fialternative) 	redholm
6	Learning objectives and skills	 Students are able to: name and explain fundamental concepts in functional a navigate between weak and strong topologies and hav understanding of their relation and respective properti work with Sobolev spaces and weak derivatives and give information about Sobolev functions, identify, set up and work with variational formulations PDEs in order to derive existence/uniqueness of solution setting 	e an es, re qualitative of linear elliptic
7	Prerequisites	Recommended: Basic knowledge in normed vector spaces, Lebesgue integration and Linear Algebra	
8	Integration into curriculum	1st semester or preparationary period for the CAM master	
9	Module compatibility	M. Sc. Computational Applied Mathematics - non-specialization	
10	Method of examination	Oral examination (15 min)	
11	Grading Procedure	100% Oral examination	
12	Module frequency	Summer semester	
13	Workload	Contact hours: 14x2 + 7x1 = 35 hrs Independent study: 115 hrs Total: 150 hrs, corresponding to 5 ECTS credits	

14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	 H. W. Alt: Linear Functional Analysis, Springer A. Bressan: Lecture Notes on Functional Analysis: With Applications to Linear Partial Differential Equations, AMS H. Brezis: Functional Analysis, Sobolev Spaces and Partial Differential Equations , Springer L. C. Evans: Partial Differential Equations, AMS W. Hackbusch: Theorie und Numerik elliptischer Differentialgleichungen, Vieweg+Teubner Lecture notes 	

