

Module handbook for the Master's degree programme Computational and Applied Mathematics for the summer semester 2018

In the following you find only those modules which are offered in the summer semester 2018.

Department of Mathematics Friedrich-Alexander-Universität Erlangen-Nürnberg

Last updated:June 28, 2018Reference:Examination regulations dated Feb 27, 2017

Table of contents

Module 2: ModAna2: Modeling and Analysis in Continuum Mechanics II	4
Module 3: MoSi: Practical Course: Modeling, Simulation, Optimization	
Module 4: PTfS-CAM: Programming Techniques for Supercomputers in CAM	
Module 9: AdSolTech: Advanced Solution Techniques	
Module 10: RTpMNum: Transport and Reaction in Porous Media: Modeling	
Module 12: NuIF1: Numerics of Incompressible Flows I	
Module 15: ThSDE: Theory of Stochastic Evolution Equations	
Module 24: MSOpt: Introduction to Material and Shape Optimization	
Module 28: NALIP: Numerical Aspects of Linear and Integer Programming	

Dean of Studies (General questions about the programme)

Prof. Dr. Frauke Liers

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstr.11, 91058 Erlangen, Room 03.345 Phone: +49 9131 8567151 E-mail: frauke.liers@math.uni-erlangen.de

Examination Committee for Bachelor's and Master's degree courses in Mathematics (Examination matters for the programme)

Prof. Dr. Eberhard Bänsch

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstrasse 11, 91058 Erlangen, Room 04.323 Phone: +49 9131 8567202, E-mail: baensch@am.uni-erlangen.de

Degree programme manager

Prof. Dr. Günther Grün

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstrasse 11, 91058 Erlangen, Room 04.343 Phone: +49 9131 8567220 E-mail:gruen@math.fau.de

Degree programme administration (Procedures and organisation)

Prof. Dr. Serge Kräutle

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstrasse 11, 91058 Erlangen, Room 04.337 Phone: +49 9131 85 67213 E-mail:kraeutle@math.fau.de

Subject advisor

Prof. Dr. Serge Kräutle

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstrasse 11, 91058 Erlangen, Room 04.337 Phone: +49 9131 85 67213 E-mail:kraeutle@math.fau.de

Student Service Centre

Christine Gräßel

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstrasse 11, 91058 Erlangen, Room 01.385 Phone: +49 9131 8567024, E-mail:ssc@math.fau.de

1	Module name	Module 2: ModAna2: Modeling and Analysis in Continuum Mechanics II	5 ECTS credits	
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 0.5 semester hrs/week		
3	Lecturers	Prof. P. Knabner		
4	Module coordinator	Prof. Dr. G. Grün		
5	Content	 At least two of the following three topics: Shear-thinning liquids and monotone operators: analytical concepts, using the example of the p-Laplace equation Poisson-Boltzmann equation: analysis of semilinear equations with monotone nonlinearities Mathematical concepts of model reduction: homogenisation, gamma convergence, asymptotic analysis 		
6	Learning objectives and skills	 Students explain various concepts for model reduction and apply them to derive mathematical models, formulate and prove qualitative statements on solutions to quasilinear or semilinear partial differential equations in continuum mechanics. 		
7	Prerequisites	Recommended: Modeling and Analysis in Continuum Mechanics I		
8	Integration into curriculum	2nd semester		
9	Module compatibility	Compulsory module for MSc in Computational and Applied Mathematics Compulsory elective module for MSc in Mathematics		
10	Method of examination	oral exam (20 minutes)		
11	Grading procedure	100% based on oral exam		
12	Module frequency	Summer semester (annually)		
13	Workload	load Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits		
14	Module duration	One semester		
15	Teaching and examination language	English		
16	Recommended reading	 A. Braides: Gamma-convergence for beginners, Oxford University Pr D. Cioranescu & P. Donato: An introduction to homogenization, Oxfor Press R.E. Showalter: Monotone operators in Banach space and nonlinear differential equations, AMS 	ord University	

1	Module name	Module 3: MoSi: Practical Course: Modeling, Simulation, Optimization	5 ECTS credits	
2	Courses/lectures	Seminar: 3 semester hrs/week		
3	Lecturers	Prof. F. Frank		
4	Module coordinator	Prof. Dr. P. Knabner		
5	Content	 Modelling, analysis, simulation or optimisation of problems in engir natural sciences (Partial) differential equation models (also with additional aspects) a numerical algorithms ((Mixed) Finite Element Method ((M)FEM), Fin Method (FVM), Discontinuous Galerkin (DG)) Mixed integer or continuous (non-)linear optimisation 	and corresponding	
6	Learning objectives and skills	 Students work on a problem in engineering or the natural sciences as part of assigned independent tasks, by constructing a suitable mathematica solving it using analytical and numerical methods, are able to collect and evaluate relevant information and identify collect are able to implement processes using their own or specified software valuate the results, are able to set out their approaches and results in a comprehensible manner, making use of appropriate presentation techniques, are able to develop and set out in writing the theories and problem have developed, develop their communication skills and ability to work as a team the work. 	al model and onnections, are and critically e and convincing solutions they	
7	Prerequisites	Recommended: Modeling and Analysis in Continuum Mechanics I		
8	Integration into curriculum	2nd semester		
9	Module compatibility	Compulsory module for MSc in Computational Applied Mathematics Elective module for MSc in Mathematics Elective module for MSc in Mathematics and Economics		
10	Method of examination	Talk/presentation (45 minutes) and final report (10 - 15 pages)		
11	Grading procedure	Talk/presentation 50% final report 50%		
12	Module frequency	Summer semester (annually)		
13	Workload	Contact hours: 45 hrs Independent study: 105 hrs Total: 150 hrs, corresponding to 5 ECTS credits		
14	Module duration	One semester		
15	Teaching and examination language	English		
16	Recommended reading	Project-dependent. Will be published on StudOn at the beginning of the	ne semester.	

1	Module name	Module 4: PTfS-CAM: Programming Techniques for Supercomputers in CAM	10 ECTS credits	
2	Courses/lectures	a) Lectures: 4 semester hrs/week		
		b) Practical: 2 semester hrs/week		
3	Lecturers	Prof. Dr. G. Wellein		
4	Module coordinator	Prof. Dr. Gerhard Wellein		
5	Content	 Introduction to the architecture of modern supercomputers Single core architecture and optimisation strategies Memory hierarchy and data access optimization Concepts of parallel computers and parallel computing Efficient "shared memory" parallelisation (OpenMP) Parallelisation approaches for multi-core processors including GPUs Efficient "distributed memory" parallelisation (MPI) Roofline performance model Serial and parallel performance modelling Complete parallel implementation of a modern iterative Poisson solver 		
6	Learning objectives and skills	 Students acquire a comprehensive overview of programming modern supercomputers efficiently for numerical simulations, learn modern optimisation and parallelisation strategies, guided by structured performance modelling, acquire an insight into innovative programming techniques and alternative supercomputer architectures, are able to implement numerical methods to solve partial differential equations (PDEs) with finite difference (FD) discretization with high hardware efficiency on parallel computers. 		
7	Prerequisites	Recommended: Experience in C/C++ or Fortran programming; basic knowledge of MPI and OpenMP programming		
8	Integration into curriculum	2nd semester		
9	Module compatibility	Compulsory module for MSc Computational and Applied Mathematics		
10	Method of examination	oral exam (30 minutes)		
11	Grading procedure	100% based on oral exam		
12	Module frequency	Summer semester (annually)		
13	Workload	Contact hours: 120 hrs Independent study: 180 hrs Total: 300 hrs, corresponding to 10 ECTS credits		
14	Module duration	One semester		
15	Teaching and examination language	English		
16	Recommended reading	 G. Hager & G. Wellein: Introduction to High Performance Computing for Scientists and Engineers. CRC Computational Science Series, 2010. ISBN 978-1439811924 J. Hennessy & D. Patterson: Computer Architecture. A Quantitative Approach. Morgan Kaufmann Publishers, Elsevier, 2003. ISBN 1-55860-724-2 		

1	Module name	Module 9: 5 ECTS-Punkte		
		AdSolTech: Advanced Solution Techniques a) Lectures: 2 semester hrs/week		
2	Courses/lectures	actical: 0,5 semester hrs/week		
3	Lecturers	Prof. Dr. E. Bänsch		
4	Module coordinator	Prof. Dr. P. Knabner		
5	Content	 Krylov subspace methods for large non-symmetric systems of equations Multilevel methods, especially multigrid (MG) methods, nested and non- nested grid hierarchies Parallel numerics, especially domain decomposition methods Inexact Newton/Newton-Krylov methods for discretized nonlinear partial differential equations Preconditioning and operator-splitting methods 		
6	Students are able to design application-specific own MG algorithms with the theory multigrid methods and decide for which problems the MG algorithm is suit to solve large linear systems of equations 			
7	Prerequisites	Recommended: Advanced Discretization Techniques		
8	Integration into curric	2nd semester		
9	Module compatibility	 Mandatory elective module for MSc in Computational and Applied Mathematics Compulsory elective module for MSc in Mathematics 		
10	Method of examinatio			
11	Grading procedure	100% Oral exam		
12	Module frequency	Summer semester (annually)		
13	Workload	Contact hours: 37,5 hrs Independent study: 112,5 hrs Total: 150 hrs, corresponding to 5 ECTS credits		
14	Module duration	One semester		
15	Teaching and examina language	tion English		
16	Recommended readin	 A. Quarteroni & A. Valli: Numerical Approximation of Partial Differential Equations P. Knabner & L. Angermann: Numerical Methods for Elliptic and Parabolic Differential Equations Further literature and scientific publications are announced during the lectures 		

1	Module name	Module 10: RTpMNum: Transport and Reaction in Porous Media: Modeling	5 ECTS-Punkte
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 0,5 semester hrs/week	
3	Lecturers	Dr. N. Ray	

4	Module coordinator	Prof. Dr. S. Kräutle
5	Content	 Modelling of fluid flow through a porous medium: Groundwater models (Richards' equation), multiphase flow Advection, diffusion, dispersion of dissolved substances, (nonlinear) reaction- models (i.a. law of mass action, adsorption, kinetic / in local equilibrium, reactions with minerals) Models of partial (PDEs), ordinary (ODEs) differential equations, and local conditions Nonnegativity, boundedness, global existence of solutions, necessary model assumptions in the case of a pure ODE model as well as for a PDE model Existence of stationary solutions (i.a. introduction to the Feinberg network theory)
6	Learning objectives and skills	 Students are able to model flow and reaction processes in porous media on macro- and micro-scale using partial differential equations, possess the techniques and the analytical foundations to assess the global existence of solutions.
7	Prerequisites	Recommended: Basic knowledge in differential equations
8	Integration into curriculum	2nd semester
9	Module compatibility	 Mandatory elective module for MSc in Computational and Applied Mathematics Research module for MSc in Mathematics with field of "Modeling, Simulation, and Optimisation" Mathematical elective module in all other fields of study in MSc Mathematics and in MSc Mathematics and Economics Master Physics, non-physical elective module
10	Method of examination	Oral exam (20 minutes)
11	Grading procedure	100% Oral exam
12	Module frequency	Summer semester (annually)
13	Workload	Contact hours: 37,5 hrs Independent study: 112,5 hrs Total: 150 hrs, corresponding to 5 ECTS credits
14	Module duration	One semester
15	Teaching and examination language	English
16	Recommended reading	 S. Kräutle: lecture notes www.mso.math.fau.de/fileadmin/am1/users/kraeutle/scripts/Skript-RT.pdf C. Eck, H. Garcke & P. Knabner: Mathematical Modeling, Springer J.D. Logan: Transport Modeling in Hydrogeochemical Systems, Springer M. Feinberg: lecture notes crnt.osu.edu/LecturesOnReactionNetworks

1	Module name	Module 12: NuIF1: Numerics of Incompressible Flows I	5 ECTS credits
2	Courses/lectures	a) Lecture: 2 semester hrs/week b) Practical: 0.5 semester hrs/week	
3	Lecturers	Prof. Dr. E. Bänsch	

4	Module coordinator	Prof. Dr. E. Bänsch	
5	Content	 Mathematical modelling of (incompressible) flows Variational formulation, existence and (non-)uniqueness of solutions to the stationary Navier-Stokes (NVS) equations Stable finite element (FE) discretization of the stationary (Navier-) Stokes equations Error estimates Solution techniques for the saddle point problem 	
6	Learning objectives and skills	 explain and apply the mathematical theory for the stationary, incompressible Navier-Stokes equations, analyse FE discretization for the stationary Stokes equations and apply them to practical problems, explain the meaning of the inf-sup condition, choose the appropriate function spaces, stabilisation techniques and solution techniques and apply them to concrete problem settings. 	
7	Prerequisites	Recommended: Advanced discretization techniques	
8	Integration into curriculum	nd semester	
9	Module compatibility	 Mandatory elective module for MSc in Computational and Applied Mathematics Compulsory elective module for MSc in Mathematics 	
10	Method of examination	oral exam (20 minutes)	
11	Grading procedure	100% based on oral examination	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	

16	Recommended reading	•	 V. Girault & PA. Raviart: Finite element methods for the Navier-Stokes equations. Theory and algorithms. Springer 1986 H. Elman, D. Silvester & A. Rathen: Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Oxford University Press 2014 R. Temam: Navier-Stokes equations. Theory and numerical analysis. North Holland
----	---------------------	---	---

1	Module name	Module 15: ThSDE: Theory of Stochastic Evolution Equations	5 ECTS credits	
2	Courses/lectures	Lecture: 2 semester hrs/week Practical: 0.5 semester hrs/week		
3	Lecturers	Prof. Dr. G. Grün		
4	Module coordinator	Prof. Dr. G. Grün		
	Content	 Infinitely dimensional Wiener processes, Stochastic integral in Hilbert spaces, Ito-processes and stochastic differential equations, Optionally: existence results for stochastic partial differentia further results on stochastic ODE (Fokker-Planck equations, . 	•	
	Learning objectives and skills	 Students characterize Gaussian measures on Hilbert spaces. They explain representation formulas for Q-Wiener processes as well as the derivation of the stochastic integral, successfully apply concepts to solve stochastic differential equations explicitly and prove existence of solutions to stochastic evolution equations. 		
7	Prerequisites	Basic knowledge in probability theory or functional analysis is recomm	nended.	
8	Integration into curriculum	nd semester		
9	Module compatibility	 Mandatory elective module for MSc in Computational and Applied Mathematics, Mandatory elective module for MSc in Mathematics. 		
10	Method of examination	oral exam (20 minutes)		
11	Grading procedure	100% based on oral exam		
12	Module frequency	Summer semester (not annually) To check whether the course is offered, see UnivIS: univis.fau.de		
13	Workload	Contact hours: 37.5 hrs Independent study: 112,5 hrs Total: 150 hrs, corresponding to 5 ECTS		
14	Module duration	One semester		
15	Teaching and examination language	English		
16	Recommended reading	 G. Da Prato & J. Zabczyk: Stochastic equations in infinite dim Cambridge University Press I. Karatzas & S.E. Shreve: Brownian motion and stochastic ca B. Oksendal: Stochastic differential equations, Springer C. Prévôt & M. Röckner: A concise course on stochastic parti equations, Springer 	lculus, Springer	

1	Module name	Module 24: MSOpt: Introduction to Material and Shape Optimization	10 ECTS credits	
2	Courses/lectures	a) Lectures: 4 semester hrs/week b) Practical: 1 semester hr/week		
3	Lecturers	Prof. Dr. M. Stingl		
4	Module coordinator	Prof. Dr. M. Stingl		
5	Content	 shape-, material- and topology optimization models linear elasticity and contact problems existence of solutions of shape, material and topology optimi approximation of shape, material and topology optimization provide the schemes 		
6	Learning objectives and skills	 derive mathematical models for shape-, material and topology optimization problems, apply regularization techniques to guarantee to existence of solutions, approximate design problems by finite dimensional discretizations, derive algebraic forms and solve these by nonlinear programming techniques. 		
7	Prerequisites	Recommended: Knowledge in nonlinear optimization, Basic knowledge in numerics of partial differential equations		
8	Integration into curriculum	2nd semester		
9	Module compatibility	 Mandatory elective module for MSc in Computational and Applied Mathematics Elective module for MSc in Mathematics 		
10	Method of examination	oral exam (20 minutes)		
11	Grading procedure	100% based on oral exam		
12	Module frequency	Summer semester (annually)		
13	Workload	Contact hours: 75 hrs Independent study: 225 hrs Total: 300 hrs, corresponding to 10 ECTS credits		
14	Module duration	One semester		
15	Teaching and examination language	English		
16	Recommended reading	 J. Haslinger & R. Mäkinen: Introduction to shape optimization, SIAM, M. P. Bendsoe & O. Sigmund: Topology Optimization: Theory, Methods and Applications, Springer. 		

1	Module name	Module 28: NALIP: Numerical Aspects of Linear and Integer Programming	5 ECTS credits	
2	Courses/lectures	a) Lectures: 2 weekly lecture hours b) Practical: 0,5 weekly lecture hour		
3	Lecturers	Prof. Dr. R. Bixby		
4	Module coordinator	Prof. Dr. A. Martin		
5	Content	 Revised Simplex (with bounds) Simplex Phase I Dual Simplex LP Presolve/Postsolve Scaling MIP Solution Techniques 		
6	Learning objectives and skills	Students are able to explain and use methods and numerical approaches for solving linear and mixed-integer programs in practice.		
7	Prerequisites	Knowledge in linear algebra and combinatorial optimization is recommended.		
8	Integration into curriculum	2nd semester		
9	Module compatibility	 Mandatory elective module for MSc Computational and Applied Mathematics, Elective module for MSc Mathematics, Elective Module for MSc Mathematics and Economics, Core/research module MSc Mathematics within "Modeling, simulation, optimization", MSc Mathematics and Economics within "Optimization and process management" 		
10	Method of examination	oral exam (15 minutes)		
11	Grading procedure	100% based on oral exam		
12	Module frequency	Summer semester (not annually) To check whether the course is offered, see UnivIS: univis.fau.de		
13	Workload	Attendance: 45 h Self-study: 105 h		
14	Module duration	1 semester		
15	Teaching and examination language	English		
16	Recommended reading	 V. Chvátal: Linear Programming, W. H. Freeman and Company, New York, 1983 L.A. Wolsey: Integer Programming, John Wiley and Sons, Inc., 1998 		