

List of modules for the Master's degree programme Computational and Applied Mathematics for the summer semester 2022

Not all of the listed modules are offered annually. On the other hand, additional modules may be offered.

Department of Mathematics Friedrich-Alexander-Universität Erlangen-Nürnberg

Last updated: April 14th 2022

Reference: Examination regulations dated Feb 27, 2017

Table of contents

Module 2: ModAna2: Modeling and Analysis in Continuum Mechanics II	5
Module 3: MoSi: Modeling, Simulation, Optimization (Practical Course)	7
Module 4: PTfS-CAM: Programming Techniques for Supercomputers in CAM	8
Module 6a: MaSe: Master's seminar MApA	10
Module 6b: MaSe: Master's seminar NASi	11
Module 6c: MaSe: Master's seminar Opti	12
Module 7: Master's Thesis	13
Module 10: AdSolTech: Advanced Solution Techniques	14
Module 11: RTpMMod: Transport and Reaction in Porous Media: Modeling	16
Module 13: NuIF1: Numerics of Incompressible Flows I	18
Module 16: MoL: Mathematics of Learning	20
Module 21: PcFem: Practical Course on Finite Element Methods for Phase-Separation Equations	21
Module 24: IPro: Partial Differential Equations Based Image Processing	23
Module 27: MSOpt: Introduction to Material and Shape Optimization	24
Module 30: RobOpt II: Robust Optimization II	26
Module 31: NALIP: Numerical Aspects of Linear and Integer Programming	28
Module 34: DiscOpt II: Discrete Optimization II	29
Module 39: NumPDE II: Numerics of Partial Differential Equations II	31
Module 43: CML: Control, Machine Learning and Numerics	33
Module 45: CC: Computational Complexity	35
Module 46: NMNP: Numerical Methods for Nonsmooth Problems	37
Free Flective Module: Scalar Conservation laws	30

Dean of Studies (General questions about the programme)

Prof. Dr. Friedrich Knop

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstr.11, 91058 Erlangen, Room 01.321 Phone: +49 9131 8567021 E-mail: knop@math.fau.de

Examination Committee for Bachelor's and Master's degree courses in Mathematics (Examination matters for the programme)

Prof. Dr. Eberhard Bänsch

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstrasse 11, 91058 Erlangen, Room 04.323

Phone: +49 9131 8567202, E-mail: baensch@am.uni-erlangen.de

Degree programme manager

Prof. Dr. Günther Grün

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstrasse 11, 91058 Erlangen, Room 04.343

Phone: +49 9131 8567220 E-mail:gruen@math.fau.de

Degree programme administration (Procedures and organisation)

Prof. Dr. Serge Kräutle

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstrasse 11, 91058 Erlangen, Room 04.337

Phone: +49 9131 85 67213 E-mail:kraeutle@math.fau.de

Subject advisor

Prof. Dr. Serge Kräutle

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstrasse 11, 91058 Erlangen, Room 04.337

Phone: +49 9131 85 67213 E-mail:kraeutle@math.fau.de

Student Service Centre

Christine Gräßel, M. A.

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstrasse 11, 91058 Erlangen, Room 01.385

Phone: +49 9131 8567024, E-mail:ssc@math.fau.de

1	Module name	Module 2: ModAna2: Modeling and Analysis in Continuum Mechanics II	ECTS 5
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Exercises: 0.5 semester hrs/week	МАрА
3	Lectures	Nicola De Nitti nicola.de.nitti@fau.de	
4	Module coordinator	Prof. Dr. G. Grün gruen@math.fau.de	
5	Content	 At least two of the following three topics: Monotone operators and applications in continuum mecha shear-thinning liquids, Mathematical concepts of model reduction: homogenization convergence, asymptotic analysis, Reaction diffusion models from biology and social sciences. Models in fluid dynamics (compressible and incompressible Stokes equations); Wave phenomena and other hyperbolic equations in contimechanics 	on, gamma ; e Navier-
6	Learning objectives and skills	Students can: derive mathematical models for several important applica continuum mechanics. apply analytical techniques to rigorously prove qualitative solutions.	
7	Prerequisites	Recommended: Modeling and Analysis in Continuum Mechanics I	
8	Integration into curriculum	2nd semester	
9	Module compatibility	Mandatory module for MSc in Computational and Applied Mathematics Mandatory elective module for MSc in Mathematics in the fields of "Modeling, Simulation and Optimization" and "Analysis and Stochastics"	
10	Method of examination	oral examination (20 minutes)	
11	Grading Procedure	100% based on Oral examination	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 35 hrs Independent study: 115 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	

16	Recommended reading	 A. Braides: Gamma-convergence for beginners, Oxford University Press, D. Cioranescu & P. Donato: An introduction to homogenization, Oxford University Press, L.C. Evans. (2010). Partial differential equations. AMS. T.A. Roberts (1994). A one-dimensional introduction to continuum mechanics. World Scientific. R.E. Showalter: Monotone operators in Banach space and nonlinear partial differential equations, AMS T. Temam and A. Miranville (2005). Mathematical modeling in continuum mechanics. Cambridge University Press. Handouts and lecture notes distributed via StudOn.
----	---------------------	--

		Module 3:	
1	Module name	MoSi: Modeling, Simulation, Optimization (Practical Course)	ECTS 5
2	Courses/lectures	Seminar: 3 semester hrs/week	MApA/NASi/Opti
3	Lectures	Dr. Daniël Veldman daniel.veldman@math.fau.de	
4	Module coordinator	Prof. Dr. Martin Burger martin.burger@fau.de	
5	Content	 Modelling, analysis, simulation and/or optimization of problems in engineering or the natural sciences Numerical algorithms for partial differential equation models (finite differences, finite elements, etc) Continuous optimization and optimal control 	
6	Learning objectives and skills	 work on problems in engineering or the natural sciences by constructing a suitable mathematical model, are able to simulate, analyze, and/or optimize the constructed mathematical model using numerical methods, are able to implement processes using their own or specified software and critically evaluate the results, are able to set out their approaches and results in a comprehensible and convincing manner, making use of appropriate presentation techniques, are able to develop and set out in writing the theories and problem solutions they have developed. 	
7	Prerequisites	Recommended: Modeling and Analysis in Continuum Mechanics I	
8	Integration into curriculum	2nd semester	
9	Module compatibility	Compulsory module for MSc in Computational Applied Mathem Mandatory elective module for MSc in Mathematics in the field Simulation and Optimization"	
10	Method of examination	Weekly hand in assignments. Final project.	
11	Grading Procedure	Hand in assignments 20% Final project 80%	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 42 hrs Independent study: 108 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	Project-dependent. Will be published on StudOn at the beginning of the semester.	

1	Module name 65875	Module 4: PTfS-CAM: Programming Techniques for Supercomputers in CAM	ECTS 10
2	Courses/lectures	a) Lectures: 4 semester hrs/week b) Practical: 2 semester hrs/week	
3	Lecturers	Prof. Dr. Gerhard Wellein Gerhard.Wellein@rrze.uni-erlangen.de	
4	Module coordinator	Prof. Dr. Gerhard Wellein <u>Gerhard.Wellein@rrze.uni-erlangen.de</u>	
5	Content	Introduction to the architecture of modern supercomputers Single core architecture and optimisation strategies Memory hierarchy and data access optimization Concepts of parallel computers and parallel computing Efficient "shared memory" parallelisation (OpenMP) Parallelisation approaches for multi-core processors including GPUs Efficient "distributed memory" parallelisation (MPI) Roofline performance model Serial and parallel performance modelling Complete parallel implementation of a modern iterative Poisson solver	
6	Learning objectives and skills	 Students acquire a comprehensive overview of programming modern supercomputers efficiently for numerical simulations, learn modern optimisation and parallelisation strategies, guided by structured performance modelling, acquire an insight into innovative programming techniques and alternative supercomputer architectures, are able to implement numerical methods to solve partial differential equations (PDEs) with finite difference (FD) discretization with high hardware efficiency on parallel computers. 	
7	Prerequisites	Recommended: Experience in C/C++ or Fortran programming; basic knowledge of MPI and OpenMP programming	
8	Integration into curriculum	2nd semester	
9	Module compatibility	Compulsory module for MSc Computational and Applied Mathemati	cs
10	Method of examination	oral exam (30 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 120 hrs Independent study: 180 hrs Total: 300 hrs, corresponding to 10 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	

16 Recommended reading	 G. Hager & G. Wellein: Introduction to High Performance Computing for Scientists and Engineers. CRC Computational Science Series, 2010. ISBN 978-1439811924 J. Hennessy & D. Patterson: Computer Architecture. A Quantitative Approach. Morgan Kaufmann Publishers, Elsevier, 2003. ISBN 1-55860-724-2
------------------------	---

1	Module name	Module 6a: MaSe: Master's seminar MApA	ECTS 5
2	Courses/lectures	"Mathematical Modeling and Data Analysis"	
3	Lecturers	Prof. Dr. Burger martin.burger@fau.de	
4	Module coordinator	Prof. Dr. Günther Grün gruen@math.fau.de	
5	Content	A topic from MApA that relates to the compulsory elective modules offered.	
6	Learning objectives and skills	can use original literature to familiarise themselves with a current retopic, can structure the content acquired both verbally and in writing and own contributions to its presentation and/or substance, learn scientific content on the basis of academic lectures and active at a plenary session. For the MAPA specialisation: make use of analytical techniques to rigorously prove the qualitative characteristics of solutions to mathematical models in applied sci	make their ly discuss it
7	Prerequisites	All compulsory modules for the MSc in Computational and Applied Mathematics recommended	
8	Integration into curriculum	3rd semester	
9	Module compatibility	Compulsory module for MSc in Computational and Applied Mathematics Compulsory module for MSc in Mathematics Compulsory module for MSc in Mathematics and Economics	
10	Method of examination	talk/presentation (90 minutes) and handout (5-10 pages)	
11	Grading Procedure	talk/presentation 75% handout 25%	
12	Module frequency	Winter semester (annually)	
13	Workload	Contact hours: 30 hrs Independent study: 120 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	Depending on topic. Will be published on StudOn at the beginning of the semester.	

1	Module name	Module 6b: MaSe: Master's seminar NASi	ECTS 5
2	Courses/lectures	"Mathematical Modeling and Data Analysis"	
3	Lecturers	Prof. Dr. Burger martin.burger@fau.de	
4	Module coordinator	Prof. Dr. Eberhard Bänsch <u>baensch@math.fau.de</u>	
5	Content	A topic from NASi that relates to the compulsory elective modules of	offered.
6	Learning objectives and skills	can structure the content acquired both verbally and in writing and own contributions to its presentation and/or substance, learn scientific content on the basis of academic lectures and active at a plenary session. For the NASi specification: can solve exemplary computational problems with given or self-dev software in order to illustrate or verify numerical methods under consideration.	ly discuss it
7	Prerequisites	All compulsory modules for the MSc in Computational and Applied N recommended	Nathematics
8	Integration into curriculum	3rd semester	
9	Module compatibility	Compulsory module for MSc in Computational and Applied Mathematics Compulsory module for MSc in Mathematics Compulsory module for Msc in Mathematics and Economics	
10	Method of examination	talk/presentation (90 minutes) and handout (5-10 pages)	
11	Grading Procedure	talk/presentation 75% handout 25%	
12	Module frequency	Winter semester (annually)	
13	Workload	Contact hours: 30 hrs Independent study: 120 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	Depending on topic. Will be published on StudOn at the beginning o semester.	f the

1	Module name	Module 6c: MaSe: Master's seminar Opti	ECTS 5
2	Courses/lectures		
3	Lecturers		
4	Module coordinator	Prof. Dr. Michael Stingl michael.stingl@fau.de	
5	Content	A topic from Opti that relates to the compulsory elective modules of	offered.
6	Learning objectives and skills	can use original literature to familiarise themselves with a current r topic, can structure the content acquired both verbally and in writing and own contributions to its presentation and/or substance, learn scientific content on the basis of academic lectures and active at a plenary session. For the Opti specialisation: model theoretical and applied tasks as optimization problems and/optimization problems.	make their ely discuss it or develop
7	Prerequisites	optimization algorithms for their solution and/or put these into practice. All compulsory modules for the MSc in Computational and Applied Mathematics recommended	
8	Integration into curriculum	3rd semester	
9	Module compatibility	Compulsory module for MSc in Computational and Applied Mathematics Compulsory module for MSc in Mathematics Compulsory module for MSc in Mathematics and Economics	
10	Method of examination	talk/presentation (90 minutes) and handout (5-10 pages)	
11	Grading Procedure	talk/presentation 75% handout 25%	
12	Module frequency	Winter semester (annually)	
13	Workload	Contact hours: 30 hrs Independent study: 120 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	Depending on topic. Will be published on StudOn at the beginning of the semester.	

1	Module name	Module 7: Master's Thesis	ECTS 25
2	Courses/lectures	Oral examination Master's Thesis	
3	Lectures	The lecturers for the degree programme in Computational and Applied Mathematics	MaPA/NASI/Opti
4	Module coordinator	Prof. Dr. Günther Grün gruen@math.fau.de	
5	Content	The master's thesis is in the field of Modelling and Analysis, or N and Simulation, or Optimization, and deals with a current resear	•
6	Learning objectives and skills	Students are capable of independently follow up a scientific question in t "Modelling and Analysis", "Numerical Analysis and Simulation "Optimization" over an extended, specified period, develop original ideas and concepts for solving scientific proble apply and improve mathematical methods rather independently unfamiliar and interdisciplinary contexts, present and explain mathematical or interdisciplinary contents manner appropriate for the target audience, both in writing a improve their ability to plan and structure by implementing a th	" or ms in these fields, y - also in clearly in a nd orally,
7	Prerequisites	Successful participation in all mandatory modules (35 ECTS) and at least 20 ECTS from mandatory elective modules	
8	Integration into curriculum	4th semester	
9	Module compatibility	Master's degree programme in Computational and Applied Mathematics	
10	Method of examination	Master's thesis (scope according to examination regulations) Oral exam (15 minutes)	
11	Grading Procedure	90% Master's thesis 10% Oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 15 hrs Independent study: 735 hrs Total: 750 hrs, corresponding to 25 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading		

1	Module name	Module 10: AdSolTech: Advanced Solution Techniques	ECTS 5
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 0.5 semester hrs/week	NASi
3	Lectures	Dr. Stefan Metzger stefan.metzger@fau.de	
4	Module coordinator	Prof. Dr. Eberhard Bänsch baensch@math.fau.de	
5	Content	 Krylov subspace methods for large non-symmetric systems Multilevel methods, especially multigrid (MG) methods, non-nested grid hierarchies Parallel numerics, especially domain decomposition method Inexact Newton/Newton-Krylov methods for discretized non-partial differential equations Preconditioning and operator-splitting methods 	ested and
6	Learning objectives and skills	are able to design application-specific own MG algorithms theory of multigrid methods and decide for which problem algorithm is suitable to solve large linear systems of equati are able to solve sparse nonlinear/non-symmetric systems with modern methods (also with parallel computers), are able to develop under critical assessment complete and methods for application-orientated problems.	s the MG ons, of equations
7	Prerequisites	Recommended: Advanced Discretization Techniques	
8	Integration into curriculum	2nd semester	
9	Module compatibility	Mandatory elective module for MSc in Computational and Applied Mathematics in the field of "Modeling, Simulation and Optimization"	
10	Method of examination	Oral exam (20 minutes)	
11	Grading Procedure	100% Oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	

16	Recommended reading	 Quarteroni & A. Valli: Numerical Approximation of Partial Differential Equations P. Knabner & L. Angermann: Numerical Methods for Elliptic and Parabolic Differential Equations Further literature and scientific publications are announced during the lectures
----	---------------------	--

1	Module name	Module 11:	ECTS 5
1	Wodule name	RTpMMod: Transport and Reaction in Porous Media: Modeling	ECISS
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 0,5 semester hrs/week	МАрА
3	Lectures	Prof. Dr. Serge Kräutle kraeutle@math.fau.de	
4	Module coordinator	Prof. Dr. Serge Kräutle kraeutle@math.fau.de	
5	Content	 Modeling of fluid flow through a porous medium: Ground (Richards' equation), multiphase flow Advection, diffusion, dispersion of dissolved substances, (reaction-models (i.a. law of mass action, adsorption, kinet equilibrium, reactions with minerals) Models of partial (PDEs), ordinary (ODEs) differential equal local conditions Nonnegativity, boundedness, global existence of solutions model assumptions in the case of a pure ODE model as we PDE model Existence of stationary solutions (i.a. introduction to the Fnetwork theory) 	nonlinear) cic / in local ations, and necessary all as for a
6	Learning objectives and skills	are able to model flow and reaction processes in porous media on macro- and micro-scale using partial differential equations, possess the techniques and the analytical foundations to assess the global existence of solutions.	
7	Prerequisites	Recommended: Basic knowledge in differential equations	
8	Integration into curriculum	2nd semester	
9	Module compatibility	 Mandatory elective module: MSc. Computational and Applied Mathematics MSc Mathematics with field of "Modelling, Simulation, and Optimization" Non-physical elective module: MSc Physics 	
10	Method of examination	Oral exam (20 minutes)	
11	Grading Procedure	100% Oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	

16 Recommended	reading	S. Kräutle: lecture notes https://www.math.fau.de/kraeutle/vorlesungsskripte/ C. Eck, H. Garcke, P. Knabner: Mathematical Modeling, Springer J.D. Logan: Transport Modeling in Hydrogeochemical Systems, Springer M. Feinberg: lecture notes crnt.osu.edu/LecturesOnReactionNetworks
----------------	---------	---

1	Module name	Module 13: NuIF1: Numerics of Incompressible Flows I	ECTS 5
2	Courses/lectures	a) Lecture: 2 semester hrs/week b) Practical: 0.5 semester hrs/week	NASi
3	Lectures	Prof. Dr. Eberhard Bänsch baensch@math.fau.de	
4	Module coordinator	Prof. Dr. Eberhard Bänsch baensch@math.fau.de	
5	Content	 Mathematical modelling of (incompressible) flows Variational formulation, existence and (non-)uniqueness of the stationary Navier-Stokes (NVS) equations Stable finite element (FE) discretization of the stationary (N Stokes equations Error estimates Solution techniques for the saddle point problem 	
6	Learning objectives and skills	 explain and apply the mathematical theory for the stational incompressible Navier-Stokes equations, analyse FE discretization for the stationary Stokes equation them to practical problems, explain the meaning of the inf-sup condition, choose the appropriate function spaces, stabilisation technical solution techniques and apply them to concrete problem so 	s and apply
7	Prerequisites	Recommended: Advanced discretization techniques	
8	Integration into curriculum	2nd semester	
9	Module compatibility	Mandatory elective module for MSc in Computational and Applied Mathematics in the field of "Modeling, Simulation and Optimization"	
10	Method of examination	oral exam (20 minutes)	
11	Grading Procedure	100% based on oral examination	
12	Module frequency	summer semester (annually)	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	one semester	
15	Teaching and examination language	English	

16	Recommended reading	 V. Girault1 & PA. Raviart: Finite element methods for the Navier-Stokes equations. Theory and algorithms. Springer 1986 H. Elman, D. Silvester & A. Rathen: Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Oxford
		 University Press 2014 R. Temam: Navier-Stokes equations. Theory and numerical analysis. North Holland

1	Module name	Module 16: MoL: Mathematics of Learning	ECTS 5
2	Courses/lectures	a) Lecture: 2 semester hrs/week b) Practical: 2 semester hrs/week	
3	Lecturers	Prof. Dr. Frauke Liers <u>frauke.liers@math.uni-erlangen.de</u>	
4	Module coordinator	Prof. Dr. M. Burger martin.burger@fau.de	
5	Content	 Machine learning: empirical risk minimization, kernel methods and variational models Mathematical aspects of deep learning Ranking problems Mathematical models of network interaction 	
6	Learning objectives and skills	Students - develop understanding of modern big data and state of the art methods to analyze them, - apply state of the art algorithms to large data sets, - derive models for network / graph structured data.	
7	Prerequisites	Prerequisites: Basic knowledge in numerical methods and optimization is recommended.	
8	Integration into curriculum	1 st semester or 3 rd semester	
9	Module compatibility	Mandatory module for: - M. Sc. Data Sciences Mandatory elective module for: - M. Sc. Computational and Applied Mathematics Elective module for: - M. Sc. Mathematics - M. Sc. Mathematics and Economics	
10	Method of examination	Oral exam (15 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Module frequency Wintersemester (annualy)	
13	Workload	Contact hours: 60 hrs Independent study: 90 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One Semester	
15	Teaching and examination language	English	
16	Recommended reading	Courville, Goodfellow, Bengio, Deep Learning, MIT Press, 2015 Hastie, Tibshirani, Friedman, The Elements of Statistical Learning, 2	008

1	Module name	Module 21: PcFem: Practical Course on Finite Element Methods for Phase-Separation Equations	ECTS 5
2	Courses/lectures	Seminar: 3 semester hrs/week	
3	Lecturers	Dr. Stefan Metzger	NASi
4	Module coordinator	Prof. Dr. Günther Grün gruen@math.fau.de	
5	Content	 Finite element discretization for Cahn-Hilliard equations, Storage concepts for sparse matrices, Adaptive mesh refinement. 	
6	Learning objectives and skills	Students implement a finite element solver for phase-separation eq are able to compare and implement different storage conc sparse matrices, are able to implement finite element solvers based on ada are able to derive and implement efficient discretizations for separation equations, are able to validate their implementation.	epts for ptive meshes,
7	Prerequisites	Recommended: Numerics of Partial Differential Equations I	
8	Integration into curriculum	1 st or 3 rd semester	
9	Module compatibility	 Mandatory elective module for BSc in Mathematics Mandatory elective module for BSC in Technomathematics Mandatory elective module for MSc in Computational and Applied Mathematics Mandatory elective module for MSc in Mathematics in the field of study "Modeling, Simulation and Optimization" 	
10	Method of examination	Oral exam (30 minutes)	
11	Grading Procedure	100% Oral exam	
12	Module frequency	Winter semester (not annually)	
13	Workload	Contact hours: 45 hrs Independent study: 105 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	one semester	

15	Teaching and examination language	English
16	Recommended reading	 P. Knabner & L. Angermann: Numerical Methods for Elliptic and Parabolic Differential Equations, Springer 2003 D. Braess: Finite Elements. Cambridge University Press 2010 B. Stroustrup: The C++ programming language, Addison-Wesley 2014

	Module name	Module 24:	
1	65912	IPro: Partial Differential Equations Based Image Processing	ECTS 5
2	Courses/lectures	a) Lectures: 2 semester hrs/week	
		b) Practical: 0.5 semester hr/week	
3	Lecturers	Prof. Dr. Martin Burger	
		martin.burger@fau.de	
4	Module coordinator	Dr. Michael Fried fried@math.fau.de	
5	Content	basics of image processing variational methods in image processing including total variation deblurring using different partial differential equations basics of image reconstruction	
		Students	
6	Learning objectives and skills	explain mathematical and algorithmic methods for image processing, apply above image processing methods in computerised practical exercises, • apply analytical techniques to evaluate the qualitative characteristics of the above methods.	
7	Prerequisites	Basic knowledge in functional analysis and numerical methods for pdes is recommended.	
8	Integration into curriculum	2nd semester	
9	Module compatibility	Mandatory elective module for MSc Computational and Applied Mathematics Mandatory elective module for MSc Mathematics • Compulsory elective module MSc Integrated Life Science	
10	Method of examination	oral exam (20 minutes)	
11	Grading Procedure	100% based on oral exam	
		if requested: every second summer semester	
12	Module frequency	To check whether the course is offered, see UnivIS univis.fau.de or handbook of current semester	module
		contact hours: 37.5 hrs	
13	Workload	independent study: 112.5 hrs	
14	Module duration	total: 150 hrs, corresponding to 5 ECTS credits one semester	
15	Teaching and examination language	English	
16	Recommended reading	 G. Aubert & P. Kornprobst: Mathematical problems in image processing, Springer Bredies & Lorenz, Mathematical Image Processing, Springer Burger & Osher, Level Set and PDE based reconstruction methods, Springer 	

1	Module name	Module 27: MSOpt: Introduction to Material and Shape Optimization	ECTS 10
2	Courses/lectures	a) Lectures: 4 semester hrs/week b) Practical: 1 semester hr/week	Opti
3	Lecturers	Prof. Dr. Michael Stingl michael.stingl@fau.de	
4	Module coordinator	Prof. Dr. Michael Stingl michael.stingl@fau.de	
5	Content	 shape-, material- and topology optimization models linear elasticity and contact problems existence of solutions of shape, material and topology opt problems approximation of shape, material and topology optimization by convergent schemes 	
6	Learning objectives and skills	 derive mathematical models for shape-, material and topo optimization problems, apply regularization techniques to guarantee to existence approximate design problems by finite dimensional discreted derive algebraic forms and solve these by nonlinear progratechniques. 	of solutions,
7	Prerequisites	Recommended: • Knowledge in nonlinear optimization, • Basic knowledge in numerics of partial differential equations	
8	Integration into curriculum	2nd semester	
9	Module compatibility	 Mandatory elective module for MSc Computational and Applied Mathematics Mandatory elective module for MSc Mathematics in the fields of "Modeling, Simulation and Optimization" Mandatory elective module for MSc Mathematics and Economics in the fields of study "Optimization and Process Management" 	
10	Method of examination	oral exam (20 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 75 hrs Independent study: 225 hrs Total: 300 hrs, corresponding to 10 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	

16	Recommended reading	 J. Haslinger & R. Mäkinen: Introduction to shape optimization, SIAM, M. P. Bendsoe & O. Sigmund: Topology Optimization: Theory, Methods and Applications, Springer.
----	---------------------	--

		Module 30:	
1	Module name	RobOpt II: Robust Optimization II	ECTS 5
		a) Lectures: 2 weekly lecture hours	
2	Courses/lectures	b) Practical: 1 weekly lecture hour	Opti
3	Lecturers	Prof. Dr. Timm Oertel timm.oertel@fau.de	
4	Module coordinator	Prof. Dr. Frauke Liers frauke.liers@math.uni-erlangen.de	
5	Content	 In practice, provided data for mathematical optimization problems is often not fully known. Robust optimization aims at finding the best solution which is feasible for input data varying within certain tolerances. The lecture covers advanced methods of robust optimization in theory and modeling. In particular, robust network flows, robust integer optimization and robust approximation are included. Further, state-of-the-art concepts, e.g., "light robustness" or "adjustable robustness" will be discussed by means of real-world applications. 	
6	Learning objectives and skills	 will be able to identify complex optimization problems under uncertainties as well as suitably model and analyze the corresponding robust optimization problem with the help of advanced techniques of robust optimization, learn the handling of appropriate solving techniques and how to analyze the corresponding results. 	
7	Prerequisites	Recommended: Robust Optimization I	
8	Integration into curriculum	2nd semester	
9	Module compatibility	 Mandatory elective module for MSc Computational and Applied Mathematics, Mandatory elective module for MSc Mathematics in the field of study "Modelling, Simulation and Optimization" Mandatory elective module for the MSc in Mathematics and Economics in the field of study "Optimization and process management" 	
10	Method of examination	oral exam (15 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Summer semester (not annually) To check whether the course is offered in the current semester, see UnivIS univis.fau.de or module handbook of current semester	
13	Workload	Total: 150 h • Attendance: 45 h • Self-study: 105 h	
14	Module duration	1 semester	
15	Teaching and examination language	English	

16	Recommended reading	 Lecture notes, will be published on StudOn at the beginning of the semester.
----	---------------------	--

1	Module name	Module 31:	ECTS 5
		NALIP: Numerical Aspects of Linear and Integer Programming a) Lectures: 2 weekly lecture hours	
2	Courses/lectures	b) Practical: 0.5 weekly lecture hour	Opti
		Dr. Andreas Bärmann	
3	Lecturers	andreas.baermann@math.uni-erlangen.de	
4	Module coordinator	Prof. Dr. Alexander Martin <u>alexander.martin@fau.de</u>	
5	Content	 Revised Simplex (with bounds) Simplex Phase I Dual Simplex LP Presolve/Postsolve Scaling MIP Solution Techniques 	
		Students	
6	Learning objectives and skills	are able to explain and use methods and numerical approaches for solving linear and mixed-integer programs in practice.	
7	Prerequisites	Knowledge in linear algebra and combinatorial optimization is recommended.	
8	Integration into curriculum	2nd semester	
9	Module compatibility	 Mandatory elective module for MSc Computational and Applied Mathematics Mandatory elective module for MSc Mathematics in the field of "Modeling, Simulation and Optimization" Mandatory elective module for MSc Mathematics and Economics in the fields of "Optimization and Process Management" 	
10	Method of examination	oral exam (15 minutes)	
11	Grading Procedure	100% based on oral exam	
		Summer semester (not annually)	
12	Module frequency	To check whether the course is offered, see UnivIS univis.fau.de or handbook of current semester	module
		Attendance: 45 h	
13	Workload	Self-study: 105 h	
14	Module duration	1 semester	
15	Teaching and examination language	English	
16	Recommended reading	 V. Chvátal: Linear Programming, W. H. Freeman and Company, New York, 1983 L.A. Wolsey: Integer Programming, John Wiley and Sons, Inc., 1998 	

1	Module name	Module 34: DiscOpt II: Discrete Optimization II	ECTS 5
2	Courses/lectures	a) Lectures: 2 weekly lecture hours b) Practical: 1 weekly lecture hour	
3	Lecturers	Prof. Dr. Alexander Martin alexander.martin@fau.de	
4	Module coordinator	Prof. Dr. Alexander Martin alexander.martin@fau.de	
5	Content	In this lecture, we cover theoretical aspects and solution strategies for difficult integer and mixed-integer optimization problems. First, we show the equivalence between separation and optimization. Then, we present solution strategies for large-scale optimization problems, e.g., decomposition methods and approximation algorithms. Finally, we deal with conditions for the existence of integer polyhedra. We also discuss applications for example from the fields of engineering, finance, energy or public transport.	
6	Learning objectives and skills	use basic terms of discrete optimization model real-world discrete optimization problems, determine their complexity and solve them with appropriate mathematical methods.	
7	Prerequisites	Recommended: Knowledge in linear and combinatorial optimization, discrete optimization I	
8	Integration into curriculum	2nd semester	
9	Module compatibility	Mandatory elective module for MSc Computational and Applied Mathematics, Elective module for MSc Mathematics, Elective module for MSc Mathematics and Economics, Elective module for MSc in Data Science, Core/research module MSc Mathematics within "Modeling, simulation, optimization", MSc Mathematics and Economics within "Optimization and process management"	
10	Method of examination	oral exam (15 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Attendance: 45 h Self-study: 105 h	
14	Module duration	1 semester	
15	Teaching and examination language	English	

16	Recommended reading	Lecture notes Bertsimas, Weismantel: Optimization over Integers, Dynamic Ideas, 2005 Conforti, Cornuéjols, Zambelli: Integer Programming, Springer 2014 Nemhauser, Wolsey: Integer and Combinatorial Optimization, Wiley 1994 Schrijver: Combinatorial optimization Vol. A - C, Springer 2003 Schrijver: Theory of Linear and Integer Programming, Wiley, 1986 Wolsey: Integer Programming, Wiley, 2021
----	---------------------	---

1	Module name	Module 39:	ECTS 5
		NumPDE II: Numerics of Partial Differential Equations II	
2	Courses/lectures	a) Lecture: 2 semester hrs/week b) Practical: 1 semester hr/week	NASi
3	Lecturers	Prof. Dr. Eberhard Bänsch baensch@math.fau.de	
4	Module coordinator	Prof. Dr. Günther Grün gruen@math.fau.de	
5	Content	 Classical and weak theory for linear parabolic initial-boundary-value problems (IBVPs) (outline), finite-element method (FEM) for 2nd-order linear parabolic IVBPs (semi-discretisation in space, time discretisation by one-step methods, stability, comparison principles, order of convergence), FEM for semi-linear elliptic and parabolic equations (fixed-point- and Newton-methods, secondary iterations), higher-order time discretisation, extrapolation, time-step control. 	
6	Learning objectives and skills	 apply algorithmic approaches for models with partial differential equations and explain and evaluate them, are capable to judge on a numerical method's properties regarding stability and efficiency, implement (with own or given software) numerical methods and critically evaluate the results, explain and apply a broad spectrum of methods with a focus on conforming finite element methods for parabolic problems, extending these approaches also to nonlinear problems, collect and evaluate relevant information and realize relationships. 	
7	Prerequisites	Recommended: basic knowledge in numerics and numerics of pde	
8	Integration into curriculum	2nd semester	
9	Module compatibility	 Mandatory elective module for MSc in Computational and Applied Mathematics Mandatory elective module for BSc Mathematics Mandatory module for BSc Technomathematik Non-Physics elective module for MSc Physics 	
10	Method of examination	written exam (90 minutes) with exercises	
11	Grading Procedure	100% based on written exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 45 hrs Independent study: 105 hrs Total: 150 hrs, corresponding to 5 ECTS credits	

14	Module duration	One semester
15	Teaching and examination language	English
16	Recommended reading	 P. Knabner, L. Angermann, Numerical Methods for Elliptic and Parabolic Partial Differential Equations, Springer, New York, 2003. S. Larsson, V. Thomée, Partial Differential Equations with Numerical Methods, Springer, Berlin, 2005.

1	Module name	Module 43: CML: Control, Machine Learning and Numerics	ECTS 10	
2	Courses/lectures	a) Lecture: 2 semester hrs/week b) Practical: 3 semester hrs/week		
3	Lectures	Prof. Dr. Enrique Zuazua enrique.zuazua@fau.de Dr. Yongcun Song yongcun.song@fau.de	Opti	
4	Module coordinator	Prof. Dr. Enrique Zuazua enrique.zuazua@fau.de		
5	Content	 several topics related to the control of Ordinary Differential Equations (ODE) and Partial Differential Equations (PDE), including controllability, observability, and some of the most fundamental work that has been done in the subject in recent years. an introduction to Machine Learning, focusing mainly on the use of control techniques for the analysis of Deep Neural Networks as a tool to address, for instance, the problem of Supervised Learning. some classical computational techniques related to the control of ODE and PDE, and machine learning. 		
6	Learning objectives and skills	Students are able to understand some basic theory on control and machine learning. learn about recent advances on control and machine learning. implement some computational techniques using their own or specified software and critically evaluate the results, set out their approaches and results in a comprehensible and convincing manner, making use of appropriate presentation techniques.		
7	Prerequisites	Basic knowledge of calculus, linear algebra, ODE and PDE. Familiari scientific computing is helpful.	ty with	
8	Integration into curriculum	2nd semester		
9	Module compatibility	Mandatory elective module for MSc Data Science (Simulation and Numerics) Mandatory elective module for MSc in Computational and Applied Mathematics (Opti)		
10	Method of examination	Project work with presentation and report		
11	Grading Procedure	50 % presentation and 50 % report		
12	Module frequency	Summer semester (annually)		
13	Workload	Contact hours: 75 hrs Independent study: 105 hrs Total: 180 hrs, corresponding to 10 ECTS credits		
14	Module duration	One semester		
15	Teaching and examination language	English		

16	Recommended reading	 L. Bottou, F. E. Curtis, and J. Nocedal, Optimization methods for large-scale machine learning. SIAM Review, 60 (2) (2018), 223-311. J. M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, 143, AMS, 2009. I. Goodfellow, Y. Bengio, & A. Courville, Deep Learning. MIT press, 2016. R. Glowinski, J. L. Lions, and J. He, Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach, Encyclopedia Math. Appl., Cambridge University Press, Cambridge, UK, 2008. C. F. Higham, and D. J. Higham, Deep learning: An introduction for applied mathematicians. SIAM Review, 61 (4) (2019), 860-891. J. Nocedal, and S. Wright, Numerical Optimization. Springer Science & Business Media, 2006. D. Ruiz-Balet, and E. Zuazua, Neural ODE control for classification, approximation and transport. arXiv preprint arXiv:2104.05278, (2021). E. Zuazua, Propagation, observation, and control of waves approximated by
		[7] D. Ruiz-Balet, and E. Zuazua, Neural ODE control for classification, approximation and transport. arXiv preprint arXiv:2104.05278, (2021).
		[9] E. Zuazua, Controllability and observability of partial differential equations: some results and open problems, in Handbook of Differential Equations: Evolutionary Equations. Vol. 3. North-Holland, 2006. 527-621.

1	Module name	Module 45: CC: Computational Complexity	ECTS 5
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 1 semester hrs/week	
3	Lecturers	Prof. Dr. Yiannis Giannakopoulos	Opti
4	Module coordinator	Prof. Dr. Yiannis Giannakopoulos yiannis.giannakopoulos@fau.de	
5	Content	Potential topics include: P, NP, and NP-completeness Complexity classes and reductions Boolean circuits The polynomial-time hierarchy Space complexity Randomized computation Counting complexity Introduction to the PCP theorem and hardness of approximation Average-case complexity	
6	Learning objectives and skills	 Upon successful completion of the module, students: Have a rigorous understand of the concept of computation and its formal limitations Have knowledge of the fundamental complexity classes (including P, NP and PSPACE) Understand the notion of completeness and are able to design and understand reductions between these classes Are exposed to various formal computation models, including Boolean circuits and randomness 	
7	Prerequisites	Undergraduate-level course in algorithms and/or discrete optimizate Basic knowledge of analysis, linear algebra and probability	tion
8	Integration into curriculum	From 1 st semester	
9	Module compatibility	 M. Sc. Data Science (Databased optimization) M. Sc. Mathematics (Modeling, Simulation and Optimization) M. Sc. Mathematics and Economics: (Optimisation and process management) M. Sc. in Computational and Applied Mathematics Also offered as a Mathematics minor ("Nebenfach Mathematik") for: B. Sc. (Computer Science) M. Sc. (Artificial Intelligence) 	
10	Method of examination	Oral exam (30 minutes)	
11	Grading Procedure	Oral exam (100%)	

12	Module frequency	Annually (summer semester)
13	Workload	Attendance: 45 h Self-study: 105 h
14	Module duration	One semester
15	Teaching and examination language	English
16	Recommended reading	 Oded Goldreich. "Computational Complexity: A Conceptual Perspective". Cambridge University Press, 2008. Sanjeev Arora and Boaz Barak. "Computational Complexity: A Modern Approach". Cambridge University Press, 2009 Christos H. Papadimitriou. "Computational Complexity". Addison-Wesley, 1994.

		Module 46: NMNP: Numerical Methods for Nonsmooth	F070 40
1	Module name	Problems	ECTS 10
2	Courses/lectures	a) Lectures: 4 semester hrs/week	
2	Courses/lectures	b) Practical: 2 semester hrs/week	
3	Lecturers	Prof. Dr. Carsten Gräser	МАрА
4	Module coordinator	Prof. Dr. Carsten Gräser graeser@math.fau.de	
5	Content	 Examples of nonsmooth problems involving partial differential equations (PDEs) (e.g. contact of elastic bodies, friction, phase transition, shallow ice glacier models, brittle fracture,) Elements of convex analysis (constrained and nonsmooth minimization problems, variational inequalities) Discretization of nonsmooth problems (e.g. finite elements, DG) Efficient algebraic solvers (active set, relaxation, nonsmooth multigrid methods) 	
6	Learning objectives and skills	Students are • familiar with different formulations of nonsmooth problems (minimization, variational inequality, subdifferential inclusion) • familiar with basic existence and well-posedness results • capable of discretizing nonsmooth problems using variational methods and solving the discrete problems efficiently • aware of the intrisic difficulties for analysis and numerics arising from nonsmoothness	
7	Prerequisites	Recommended: Introduction to numerical methods for PDEs Recommended: Basic knowledge of functional analysis (but the necessary terminology and results are briefly provided during the lecture)	
8	Integration into curriculum	1st semester	
9	Module compatibility	 Mandatory elective module for MSc in Computational and Applied Mathematics Mandatory elective module for MSc in Mathematics 	
10	Method of examination	written exam (90 minutes) with exercises	
11	Grading Procedure	100% based on written exam	
12	Module frequency	Summer semester	
13	Workload	Contact hours: 90 hrs Independent study: 210 hrs Total: 300 hrs, corresponding to 10 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	

16 Recommended reading	 I. Ekeland & R. Témam: Convex Analysis and Variational Problems, SIAM R. Glowinski & JL. Lions & R. Trémolières: Numerical Analysis of Variational Inequalities, North Holland Further literature and publications are announced during the lecture
------------------------	---

1	Module name	Free Elective Module: Scalar Conservation laws	ECTS 5
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Exercises: 0.5 semester hrs/week	
3	Lecturers	Nicola De Nitti	МАрА
4	Module coordinator	Prof. Dr. Enrique Zuazua enrique.zuazua@fau.de	
5	Content	 Introduction: applications and examples of conservation laws. Review of functional analysis: L^p spaces; functions of bounded variation. The method of characteristics: semilinear equations with constant coefficients; semilinear equations with variable coefficients; quasilinear equations. Entropy solutions: discontinuous solutions of conservation laws; Rankine-Hugoniot condition; entropy and entropy flux; entropy solutions; Liu condition; Kruzkhov's theorem; uniqueness and stability of entropy solutions. Riemann problem: solutions of the Riemann problem for convex fluxes; solutions of the Riemann problem for general fluxes. Front-tracking: construction of front-tracking approximations; existence of entropy solutions in BV. Vanishing viscosity: viscous approximation; BV a priori estimates; existence of entropy solutions in BV. Compensated compactness and applications to conservation laws: Young measures; Murat's lemma; div-curl lemma; Tartar's theorem; existence of entropy solutions in L^1 \cap L^\infty. Oleinik's estimate: Oleink's estimate for conservation laws with convex fluxes; uniqueness via Oleinik's estimate. Lax-Oleinik's formula: Legendre's transform; Lax-Oleinik's formula. Hamilton-Jacobi equations: motivation; viscosity solutions; well-posedness of viscosity solutions; equivalence between entropy solutions of conservation laws and viscosity solutions of Hamilton-Jacobi equations. Conservation laws on networks: motivations; entropy condition at a junction; vanishing viscosity approximation. 	
6	Learning objectives and skills	conservation laws; the nonlocal-to-local singular limit proble Students are able to: use language and techniques related to scalar conservations especially regarding entropy solutions, Riemann problem approximations, and front tracking algorithms; work out the examples and applications that accompany the	ation laws – ems, viscous
7	Prerequisites	Recommended: knowledge of linear algebra and calculus; basic k functional analysis.	nowledge of
8	Integration into curriculum	2 nd semester	
9	Module compatibility	Free elective:	tics and Data
10	Method of examination	Oral examination (20 minutes)	

11	Grading Procedure	100% based on oral examination
12	Module frequency	Winter semester
13	Workload	Contact hours: 35 hrs Independent study: 115 hrs Total: 150 hrs, corresponding to 5 ECTS credits
14	Module duration	One semester
15	Teaching and examination language	English

NATURWISSENSCHAFTLICHE FAKULTÄT			
16	Recommended reading	Chapter 1-10: • Bressan, A. Hyperbolic Systems of Conservation Laws: The One-dimensional Cauchy Problem. Oxford, 2000. • Coclite, G. M. Scalar Conservation Laws. Lecture Notes, 2020. • Dafermos, C. M. Hyperbolic Conservation Laws in Continuum Physics. Springer, 2016. • Evans, L. C. Partial Differential Equations. AMS, 2010. • Godlewski, E. & Raviart PA. Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, 2021. • Godlewski, E. & Raviart PA. Hyperbolic Systems of Conservation Laws. Ellipses, 1990. • Holden, H. & Risebro, N. H. Front Tracking for Hyperbolic Conservation Laws. Springer, 2015. • LeVeque, R. J. Numerical Methods for Conservation Laws. Birkhäuser, 1992. • Mishra, S., Fjordholm, U. S. & Abgrall, R. Numerical methods for conservation laws and related equations. Lecture Notes, 2019. Chapter 11: • Bressan, A. Viscosity Solutions of Hamilton-Jacobi Equations and Optimal Control Problems. Lecture Notes, 2011: http://personal.psu.edu/axb62/PSPDF/HJ-Inotes.pdf. • Corrias, L., Falcone, M. and Natalini, R. Numerical Schemes for Conservation Laws via Hamilton-Jacobi Equations. Mathematics of Computation. Vol. 64, No. 210 (Apr., 1995), pp. 555-580. • Evans, L. C. Partial Differential Equations. AMS, 2010. • Karlsen, K. H. & Risebro, N. H. A note on front tracking and the equivalence between viscosity solutions of Hamilton-Jacobi equations and entropy solutions of scalar conservation laws. Nonlinear Analysis: Theory, Methods & Applications. Volume 50, Issue 4, August 2002, Pages 455-469. Chapter 12: • Andreianov, B. P., Coclite, G. M. & Donadello, C. Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete & Continuous Dynamical Systems, 2017. Chapter 13: • Coclite, G. M., De Nitti, N., Keimer, A. & Pflug, L. On existence and uniqueness of weak solutions to nonlocal conservation laws with BV kernels. Preprint, 2020. • Coclite, G. M. Coron, JM., De Nitti, N., Keimer, A. & Pflug, L. A general result on the approximation of	

- Preprint, 2020
- Keimer, A. & Pflug, L. Existence, uniqueness and regularity results on nonlocal balance laws. J. Differential Equations, 263(7):4023–4069, 2017.

Lecture notes will be distributed via StudOn.