

List of modules for the Master's degree programme Computational and Applied Mathematics for the summer semester 2022

Not all of the listed modules are offered annually. On the other hand, additional modules may be offered.

Department of Mathematics Friedrich-Alexander-Universität Erlangen-Nürnberg

Last updated:May 02nd 2022Reference:Examination regulations dated Feb 27, 2017

Table of contents

Module 2: ModAna2: Modeling and Analysis in Continuum Mechanics II	. 5
Module 3: MoSi: Modeling, Simulation, Optimization (Practical Course)	. 7
Module 4: PTfS-CAM: Programming Techniques for Supercomputers in CAM	9
Module 6a: MaSe: Master's seminar MApA	11
Module 6b: MaSe: Master's seminar NASi	13
Module 6c: MaSe: Master's seminar Opti	14
Module 7: Master's Thesis	16
Module 10: AdSolTech: Advanced Solution Techniques	17
Module 11: RTpMMod: Transport and Reaction in Porous Media: Modeling	19
Module 13: NuIF1: Numerics of Incompressible Flows I	21
Module 16: MoL: Mathematics of Learning	23
Module 21: PcFem: Practical Course on Finite Element Methods for Phase-Separation Equations	24
Module 24: IPro: Partial Differential Equations Based Image Processing	26
Module 27: MSOpt: Introduction to Material and Shape Optimization	28
Module 30: RobOpt II: Robust Optimization II	30
Module 31: NALIP: Numerical Aspects of Linear and Integer Programming	32
Module 34: DiscOpt II: Discrete Optimization II	34
Module 39: NumPDE II: Numerics of Partial Differential Equations II	36
Module 43: CML: Control, Machine Learning and Numerics	38
Module 45: CC: Computational Complexity	40
Module 46: NMNP: Numerical Methods for Nonsmooth Problems	42
Free Elective Module: Scalar Conservation laws	44

Dean of Studies (General questions about the programme)

Prof. Dr. Friedrich Knop

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstr.11, 91058 Erlangen, Room 01.321 Phone: +49 9131 8567021 E-mail: knop@math.fau.de

Examination Committee for Bachelor's and Master's degree courses in Mathematics (Examination matters for the programme)

Prof. Dr. Eberhard Bänsch

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstrasse 11, 91058 Erlangen, Room 04.323

Phone: +49 9131 8567202, E-mail: baensch@am.uni-erlangen.de

Degree programme manager

Prof. Dr. Günther Grün

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstrasse 11, 91058 Erlangen, Room 04.343

Phone: +49 9131 8567220 E-mail:gruen@math.fau.de

Degree programme administration (Procedures and organisation)

Prof. Dr. Serge Kräutle

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstrasse 11, 91058 Erlangen, Room 04.337

Phone: +49 9131 85 67213 E-mail:kraeutle@math.fau.de

Subject advisor

Prof. Dr. Serge Kräutle

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstrasse 11, 91058 Erlangen, Room 04.337 Phone: +49 9131 85 67213 E-mail:kraeutle@math.fau.de

Student Service Centre

Christine Gräßel, M. A.

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstrasse 11, 91058 Erlangen, Room 01.385

Phone: +49 9131 8567024, E-mail:ssc@math.fau.de

1	Module name	Module 2: ModAna2: Modeling and Analysis in Continuum Mechanics II	ECTS 5
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Exercises: 0.5 semester hrs/week	МАрА
3	Lectures	Nicola De Nitti nicola.de.nitti@fau.de	
4	Module coordinator	Prof. Dr. G. Grün gruen@math.fau.de	
5	Content	 At least two of the following three topics: Monotone operators and applications in continuum mechanics, e.g. shear-thinning liquids, Mathematical concepts of model reduction: homogenization, gamma convergence, asymptotic analysis, Reaction diffusion models from biology and social sciences; Models in fluid dynamics (compressible and incompressible Navier-Stokes equations); Wave phenomena and other hyperbolic equations in continuum mechanics 	
6	Learning objectives and skills	 Students can: derive mathematical models for several important applications in continuum mechanics. apply analytical techniques to rigorously prove qualitative properties of solutions. 	
7	Prerequisites	Recommended: Modeling and Analysis in Continuum Mechanics I	
8	Integration into curriculum	2nd semester	
9	Module compatibility	Mandatory module for MSc in Computational and Applied Mathematics Mandatory elective module for MSc in Mathematics in the fields of "Modeling, Simulation and Optimization" and "Analysis and Stochastics"	
10	Method of examination	oral examination (20 minutes)	
11	Grading Procedure	100% based on Oral examination	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 35 hrs Independent study: 115 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	

		 A. Braides: Gamma-convergence for beginners, Oxford University Press,
	Recommended reading	 D. Cioranescu & P. Donato: An introduction to homogenization, Oxford University Press,
		 L.C. Evans. (2010). Partial differential equations. AMS.
16		 T.A. Roberts (1994). A one-dimensional introduction to continuum mechanics. World Scientific.
		 R.E. Showalter: Monotone operators in Banach space and nonlinear partial differential equations, AMS
		• T. Temam and A. Miranville (2005). Mathematical modeling in
		continuum mechanics. Cambridge University Press.
		Handouts and lecture notes distributed via StudOn.

1	Module name	Module 3: MoSi: Modeling, Simulation, Optimization (Practical Course)	ECTS 5
2	Courses/lectures	Seminar: 3 semester hrs/week	MApA/NASi/Opti
3	Lectures	Dr. Daniël Veldman daniel.veldman@math.fau.de	
4	Module coordinator	Prof. Dr. Martin Burger <u>martin.burger@fau.de</u>	
5	Content	 Modelling, analysis, simulation and/or optimization of problems in engineering or the natural sciences Numerical algorithms for partial differential equation models (finite differences, finite elements, etc) Continuous optimization and optimal control 	
6	Learning objectives and skills	 Students work on problems in engineering or the natural sconstructing a suitable mathematical model, are able to simulate, analyze, and/or optimize th mathematical model using numerical methods, are able to implement processes using their own software and critically evaluate the results, are able to set out their approaches and results i comprehensible and convincing manner, making appropriate presentation techniques, are able to develop and set out in writing the the solutions they have developed. 	sciences by e constructed or specified n a use of eories and problem
7	Prerequisites	Recommended: Modeling and Analysis in Continuum Med	chanics I
8	Integration into curriculum	2nd semester	
9	Module compatibility	Compulsory module for MSc in Computational Applied M Mandatory elective module for MSc in Mathematics in th "Modeling, Simulation and Optimization"	athematics e field of
10	Method of examination	Weekly hand in assignments. Final project.	
11	Grading Procedure	Hand in assignments 20% Final project 80%	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 42 hrs Independent study: 108 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	

15	Teaching and examination language	English
16	Recommended reading	Project-dependent. Will be published on StudOn at the beginning of the semester.

1	Module name 65875	Module 4: PTfS-CAM: Programming Techniques for Supercomputers in CAM	ECTS 10
2	Courses/lectures	a) Lectures: 4 semester hrs/week b) Practical: 2 semester hrs/week	
3	Lecturers	Prof. Dr. Gerhard Wellein Gerhard.Wellein@rrze.uni-erlangen.de	
4	Module coordinator	Prof. Dr. Gerhard Wellein <u>Gerhard.Wellein@rrze.uni-erlangen.de</u>	
5	Content	Introduction to the architecture of modern supercomputers Single core architecture and optimisation strategies Memory hierarchy and data access optimization Concepts of parallel computers and parallel computing Efficient "shared memory" parallelisation (OpenMP) Parallelisation approaches for multi-core processors including GPUs Efficient "distributed memory" parallelisation (MPI) Roofline performance model Serial and parallel performance modelling Complete parallel implementation of a modern iterative Poisson solver	
6	Learning objectives and skills	 Students acquire a comprehensive overview of programming modern supercomputers efficiently for numerical simulations, learn modern optimisation and parallelisation strategies, guided by structured performance modelling, acquire an insight into innovative programming techniques and alternative supercomputer architectures, are able to implement numerical methods to solve partial differential equations (PDEs) with finite difference (FD) discretization with high hardware efficiency on parallel computers. 	
7	Prerequisites	Recommended: Experience in C/C++ or Fortran programming; basic knowledge and OpenMP programming	e of MPI
8	Integration into curriculum	2nd semester	
9	Module compatibility	Compulsory module for MSc Computational and Applied Math	ematics
10	Method of examination	oral exam (30 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 120 hrs Independent study: 180 hrs Total: 300 hrs. corresponding to 10 ECTS credits	
14	Module duration	One semester	

15	Teaching and examination language	English
16	Recommended reading	 G. Hager & G. Wellein: Introduction to High Performance Computing for Scientists and Engineers. CRC Computational Science Series, 2010. ISBN 978-1439811924 J. Hennessy & D. Patterson: Computer Architecture. A Quantitative Approach. Morgan Kaufmann Publishers, Elsevier, 2003. ISBN 1-55860-724- 2

1	Module name	Module 6a: MaSe: Master's seminar MApA	ECTS 5
2	Courses/lectures	"Mathematical Modeling and Data Analysis"	
3	Lecturers	Prof. Dr. Burger martin.burger@fau.de	
4	Module coordinator	Prof. Dr. Günther Grün gruen@math.fau.de	
5	Content	A topic from MApA that relates to the compulsory elective mo offered.	odules
6	Learning objectives and skills	Students can use original literature to familiarise themselves with a current research topic, can structure the content acquired both verbally and in writing and make their own contributions to its presentation and/or substance, learn scientific content on the basis of academic lectures and actively discuss it at a plenary session. For the MApA specialisation: make use of analytical techniques to rigorously prove the qualitative characteristics of solutions to mathematical models in applied sciences.	
7	Prerequisites	All compulsory modules for the MSc in Computational and Applied Mathematics recommended	
8	Integration into curriculum	3rd semester	
9	Module compatibility	Compulsory module for MSc in Computational and Applied Ma Compulsory module for MSc in Mathematics Compulsory module for MSc in Mathematics and Economics	athematics
10	Method of examination	talk/presentation (90 minutes) and handout (5-10 pages)	
11	Grading Procedure	talk/presentation 75% handout 25%	
12	Module frequency	Winter semester (annually)	
13	Workload	Contact hours: 30 hrs Independent study: 120 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	

16Recommended readingDepending on topic. Will be published on StudOn at the beginned semester.	ginning of the
--	----------------

1	Module name	Module 6b: MaSe: Master's seminar NASi	ECTS 5
2	Courses/lectures	"Mathematical Modeling and Data Analysis"	
3	Lecturers	Prof. Dr. Burger martin.burger@fau.de	
Δ	Module coordinator	Prof. Dr. Eberhard Bänsch	
-		baensch@math.fau.de	
5	Content	A topic from NASi that relates to the compulsory elective mod offered.	ules
6	Learning objectives and skills	 Students can structure the content acquired both verbally and in writing and make their own contributions to its presentation and/or substance, learn scientific content on the basis of academic lectures and actively discuss it at a plenary session. For the NASi specification: can solve exemplary computational problems with given or self-developed software in order to illustrate or verify numerical methods under consideration. 	
7	Prerequisites	All compulsory modules for the MSc in Computational and Applied Mathematics recommended	
8	Integration into curriculum	3rd semester	
9	Module compatibility	Compulsory module for MSc in Computational and Applied Mathematics Compulsory module for MSc in Mathematics Compulsory module for Msc in Mathematics and Economics	
10	Method of examination	talk/presentation (90 minutes) and handout (5-10 pages)	
11	Grading Procedure	talk/presentation 75% handout 25%	
12	Module frequency	Winter semester (annually)	
13	Workload	Contact hours:30 hrsIndependent study:120 hrsTotal:150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	Depending on topic. Will be published on StudOn at the beginn semester.	ning of the

1	Module name	Module 6c: MaSe: Master's seminar Opti	ECTS 5
2	Courses/lectures		
3	Lecturers		
4	Module coordinator	Prof. Dr. Michael Stingl michael.stingl@fau.de	
5	Content	A topic from Opti that relates to the compulsory elective mod offered.	ules
6	Learning objectives and skills	 Students can use original literature to familiarise themselves with a current research topic, can structure the content acquired both verbally and in writing and make their own contributions to its presentation and/or substance, learn scientific content on the basis of academic lectures and actively discuss it at a plenary session. For the Opti specialisation: model theoretical and applied tasks as optimization problems and/or develop optimization algorithms for their solution and/or put these into practice. 	
7	Prerequisites	All compulsory modules for the MSc in Computational and Applied Mathematics recommended	
8	Integration into curriculum	3rd semester	
9	Module compatibility	Compulsory module for MSc in Computational and Applied M Compulsory module for MSc in Mathematics Compulsory module for MSc in Mathematics and Economics	athematics
10	Method of examination	talk/presentation (90 minutes) and handout (5-10 pages)	
11	Grading Procedure	talk/presentation 75% handout 25%	
12	Module frequency	Winter semester (annually)	
13	Workload	Contact hours: 30 hrs Independent study: 120 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	

16Recommended readingDepending on topic. Will be published on StudOn at the beginned semester.	ginning of the
--	----------------

1	Module name	Module 7: Master's Thesis	ECTS 25
2	Courses lastures	Oral examination	
2	Courses/lectures	Master's Thesis	
3	Lectures	The lecturers for the degree programme in	MaPA/NASI/Onti
Ŭ		Computational and Applied Mathematics	
4	Module coordinator	Prof. Dr. Günther Grün	
		gruen@math.fau.de	
-	0	The master's thesis is in the field of Modelling and Analys	is, or Numerical
5	Content	topic	a current research
		Students	
		are capable of independently follow up a scientific quest	ion in the fields of
		"Modelling and Analysis", "Numerical Analysis and Sim	ulation" or
		"Optimization" over an extended, specified period,	
6	Learning objectives and	develop original ideas and concepts for solving scientific fields,	problems in these
0	skills	apply and improve mathematical methods rather indepe	ndently - also in
		unfamiliar and interdisciplinary contexts,	and the stand stand
		manner appropriate for the target audience, both in w	riting and orally
		improve their ability to plan and structure by implement	ing a thematic
		project.	0
7	Prerequisites	Successful participation in all mandatory modules (35 EC	rs) and at least 20
		ECTS from mandatory elective modules	
8	Integration into curriculum	4th semester	
9	Module compatibility	Master's degree programme in Computational and Applie	ed Mathematics
10	Method of examination	Master's thesis (scope according to examination regulation	ons)
10		Oral exam (15 minutes)	
11	Grading Procedure	90% Master's thesis	
		10% Oral exam	
12	Module frequency	Summer semester (annually)	
		Contact hours: 15 hrs	
13	Workload	Independent study: 735 hrs	
		Total: 750 hrs, corresponding to 25 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	Individual, depending on topic of Master's Thesis.	

1	Module name	Module 10: AdSolTech: Advanced Solution Techniques	ECTS 5
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 0.5 semester hrs/week	NASi
3	Lectures	Dr. Stefan Metzger <u>stefan.metzger@fau.de</u>	
4	Module coordinator Content	 Prof. Dr. Eberhard Bänsch <u>baensch@math.fau.de</u> Krylov subspace methods for large non-symmetric sys equations Multilevel methods, especially multigrid (MG) method and non-nested grid hierarchies Parallel numerics, especially domain decomposition m Inexact Newton/Newton-Krylov methods for discretize nonlinear partial differential equations 	tems of Is, nested nethods ed
6	Learning objectives and skills	 Preconditioning and operator-splitting methods Students are able to design application-specific own MG algorit the theory of multigrid methods and decide for which the MG algorithm is suitable to solve large linear syste equations, are able to solve sparse nonlinear/non-symmetric syste equations with modern methods (also with parallel co are able to develop under critical assessment complet efficient methods for application-orientated problems 	hms with problems ms of ems of mputers), e and s.
7	Prerequisites	Recommended: Advanced Discretization Techniques	
8	Integration into curriculum	2nd semester	
9	Module compatibility	Mandatory elective module for MSc in Computational and Applied Mathematics in the field of "Modeling, Simulation and Optimization"	
10	Method of examination	Oral exam (20 minutes)	
11	Grading Procedure	100% Oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	

of Partial
for Elliptic and
announced
a

1	Module name	Module 11: RTpMMod: Transport and Reaction in Porous Media: Modeling	ECTS 5
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 0,5 semester hrs/week	МАрА
3	Lectures	Prof. Dr. Serge Kräutle <u>kraeutle@math.fau.de</u>	
4	Module coordinator	Prof. Dr. Serge Kräutle kraeutle@math.fau.de	
5	Content	 Modeling of fluid flow through a porous medium: Gromodels (Richards' equation), multiphase flow Advection, diffusion, dispersion of dissolved substanc (nonlinear) reaction-models (i.a. law of mass action, a kinetic / in local equilibrium, reactions with minerals) Models of partial (PDEs), ordinary (ODEs) differential and local conditions Nonnegativity, boundedness, global existence of solut necessary model assumptions in the case of a pure Ol as well as for a PDE model Existence of stationary solutions (i.a. introduction to t Feinberg network theory) 	undwater es, dsorption, equations, :ions, DE model :he
6	Learning objectives and skills	 Students are able to model flow and reaction processes in porcon macro- and micro-scale using partial differential economic possess the techniques and the analytical foundations the global existence of solutions. 	บus media ุนations, s to assess
7	Prerequisites	Recommended: Basic knowledge in differential equations	
8	Integration into curriculum	2nd semester	
9	Module compatibility	 Mandatory elective module: MSc. Computational and Applied Mathematics MSc Mathematics with field of "Modelling, Simulation Optimization" Non-physical elective module: MSc Physics 	ı, and
10	Method of examination	Oral exam (20 minutes)	
11	Grading Procedure	100% Oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	

15	Teaching and examination language	English
16	Recommended reading	 S. Kräutle: lecture notes <u>https://www.math.fau.de/kraeutle/vorlesungsskripte/</u> C. Eck, H. Garcke, P. Knabner: Mathematical Modeling, Springer J.D. Logan: Transport Modeling in Hydrogeochemical Systems, Springer M. Feinberg: lecture notes crnt.osu.edu/LecturesOnReactionNetworks

1	Module name	Module 13: NuIF1: Numerics of Incompressible Flows I	ECTS 5
2	Courses/lectures	a) Lecture: 2 semester hrs/week	NASi
3	Lectures	Prof. Dr. Eberhard Bänsch baensch@math.fau.de	
4	Module coordinator	Prof. Dr. Eberhard Bänsch baensch@math.fau.de	
5	Content	 Mathematical modelling of (incompressible) flows Variational formulation, existence and (non-)uniquene solutions to the stationary Navier-Stokes (NVS) equation Stable finite element (FE) discretization of the stationary) Stokes equations Error estimates Solution techniques for the saddle point problem 	ss of ons iry (Navier-
6	Learning objectives and skills	 Students explain and apply the mathematical theory for the star incompressible Navier-Stokes equations, analyse FE discretization for the stationary Stokes equ apply them to practical problems, explain the meaning of the inf-sup condition, choose the appropriate function spaces, stabilisation t and solution techniques and apply them to concrete p settings. 	ionary, ations and echniques roblem
7	Prerequisites	Recommended: Advanced discretization techniques	
8	Integration into curriculum	2nd semester	
9	Module compatibility	Mandatory elective module for MSc in Computational and Applied Mathematics in the field of "Modeling, Simulation and Optimization"	
10	Method of examination	oral exam (20 minutes)	
11	Grading Procedure	100% based on oral examination	
12	Module frequency	summer semester (annually)	
13	Workload	Contact hours:37.5 hrsIndependent study:112.5 hrsTotal:150 hrs, corresponding to 5 ECTS credits	
14	Module duration	one semester	
15	Teaching and examination language	English	

		• V. Girault1 & PA. Raviart: Finite element methods for the Navier-
		Stokes equations. Theory and algorithms. Springer 1986
		• H. Elman, D. Silvester & A. Rathen: Finite elements and fast
16	Recommended reading	iterative solvers: with applications in incompressible fluid
		dynamics. Oxford University Press 2014
		R. Temam: Navier-Stokes equations. Theory and numerical
		analysis. North Holland

1	Module name	Module 16: MoL: Mathematics of Learning	ECTS 5
2	Courses/lectures	a) Lecture: 2 semester hrs/week b) Practical: 2 semester hrs/week	
3	Lecturers	Prof. Dr. Frauke Liers frauke.liers@math.uni-erlangen.de	
4	Module coordinator	Prof. Dr. M. Burger <u>martin.burger@fau.de</u>	
5	Content	 Machine learning: empirical risk minimization, kernel meth variational models Mathematical aspects of deep learning Ranking problems Mathematical models of network interaction 	nods and
6	Learning objectives and skills	 Students develop understanding of modern big data and state of the art methods to analyze them, apply state of the art algorithms to large data sets, derive models for network / graph structured data. 	
7	Prerequisites	Prerequisites: Basic knowledge in numerical methods and opti- recommended.	mization is
8	Integration into curriculum	1 st semester or 3 rd semester	
9	Module compatibility	 Mandatory module for: M. Sc. Data Sciences Mandatory elective module for: M. Sc. Computational and Applied Mathematics Elective module for: M. Sc. Mathematics M. Sc. Mathematics and Economics 	
10	Method of examination	Oral exam (15 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Module frequency Wintersemester (annualy)	
13	Workload	Contact hours: 60 hrs Independent study: 90 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One Semester	
15	Teaching and examination language	English	
16	Recommended reading	Courville, Goodfellow, Bengio, Deep Learning, MIT Press, 2015 Hastie, Tibshirani, Friedman, The Elements of Statistical Learni	ng, 2008

1	Module name	Module 21: PcFem: Practical Course on Finite Element Methods for Phase-Separation Equations	ECTS 5
2	Courses/lectures	Seminar: 3 semester hrs/week	
3	Lecturers	Dr. Stefan Metzger	NASi
4	Module coordinator	Prof. Dr. Günther Grün gruen@math.fau.de	
5	Content	 Finite element discretization for Cahn-Hilliard equations, Storage concepts for sparse matrices, Adaptive mesh refinement. 	
6	Learning objectives and skills	 Students implement a finite element solver for phase-separation equations, are able to compare and implement different storage concepts for sparse matrices, are able to implement finite element solvers based on adaptive meshes, are able to derive and implement efficient discretizations for phase-separation equations, are able to validate their implementation. 	
7	Prerequisites	Recommended: Numerics of Partial Differential Equations I	
8	Integration into curriculum	1 st or 3 rd semester	
9	Module compatibility	 Mandatory elective module for BSc in Mathematics Mandatory elective module for BSC in Technomathem Mandatory elective module for MSc in Computational Applied Mathematics Mandatory elective module for MSc in Mathematics in of study "Modeling, Simulation and Optimization" 	atics and the field
10	Method of examination	Oral exam (30 minutes)	
11	Grading Procedure	100% Oral exam	
12	Module frequency	Winter semester (not annually)	

13	Workload	Contact hours: 45 hrs Independent study: 105 hrs Total: 150 hrs, corresponding to 5 ECTS credits
14	Module duration	one semester
15	Teaching and examination language	English
16	Recommended reading	 P. Knabner & L. Angermann: Numerical Methods for Elliptic and Parabolic Differential Equations, Springer 2003 D. Braess: Finite Elements. Cambridge University Press 2010 B. Stroustrup: The C++ programming language, Addison-Wesley 2014

1	Module name 65912	Module 24: IPro: Partial Differential Equations Based Image Processing	ECTS 5
2	Courses/lectures	a) Lectures: 2 semester hrs/week	
		b) Practical: 0.5 semester hr/week	
3	Lecturers	Prof. Dr. Martin Burger	
		martin.burger@tau.de	
4	Module coordinator	Dr. Michael Fried <u>fried@math.fau.de</u>	
5	Content	basics of image processing variational methods in image processing including total variation deblurring using different partial differential equations basics of image reconstruction	
6	Learning objectives and skills	 Students explain mathematical and algorithmic methods for im processing, apply above image processing methods in computeris practical exercises, apply analytical techniques to evaluate the qualitative characteristics of the above methods. 	age ed
7	Prerequisites	Basic knowledge in functional analysis and numerical methods for pdes is recommended.	
8	Integration into curriculum	2nd semester	
9	Module compatibility	 Mandatory elective module for MSc Computational and Applied Mathematics Mandatory elective module for MSc Mathematics Compulsory elective module MSc Integrated Life Science 	
10	Method of examination	oral exam (20 minutes)	
11	Grading Procedure	100% based on oral exam	
		if requested: every second summer semester	
12	Module frequency	To check whether the course is offered, see UnivIS univis.fau.de or module handbook of current semester	
		contact hours: 37.5 hrs	
13	Workload	independent study: 112.5 hrs	
		total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	one semester	
15	Teaching and examination language	English	

		G. Aubert & P. Kornprobst: Mathematical problems in image
		processing, Springer
16	Recommended reading	 Bredies & Lorenz, Mathematical Image Processing, Springer
		 Burger & Osher, Level Set and PDE based reconstruction
		methods, Springer

1	Module name	Module 27: MSOpt: Introduction to Material and Shape Optimization	ECTS 10
2	Courses/lectures	a) Lectures: 4 semester hrs/week b) Practical: 1 semester hr/week	Opti
3	Lecturers	Prof. Dr. Michael Stingl michael.stingl@fau.de	
4	Module coordinator	Prof. Dr. Michael Stingl michael.stingl@fau.de	
5	Content	 shape-, material- and topology optimization models linear elasticity and contact problems existence of solutions of shape, material and topology optimization problems approximation of shape, material and topology optim problems by convergent schemes 	, ization
6	Learning objectives and skills	 Students derive mathematical models for shape-, material and optimization problems, apply regularization techniques to guarantee to existe solutions, approximate design problems by finite dimensional discretizations, derive algebraic forms and solve these by nonlinear programming techniques. 	topology nce of
7	Prerequisites	 Recommended: Knowledge in nonlinear optimization, Basic knowledge in numerics of partial differential equility 	ations
8	Integration into curriculum	2nd semester	
9	Module compatibility	 Mandatory elective module for MSc Computational and A Mathematics Mandatory elective module for MSc Mathematics in the fi "Modeling, Simulation and Optimization" Mandatory elective module for MSc Mathematics and Ecc the fields of study "Optimization and Process Managemer 	pplied elds of pnomics in nt"
10	Method of examination	oral exam (20 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 75 hrs Independent study: 225 hrs Total: 300 hrs, corresponding to 10 ECTS credits	

14	Module duration	One semester
15	Teaching and examination language	English
16	Recommended reading	 J. Haslinger & R. Mäkinen: Introduction to shape optimization, SIAM, M. P. Bendsoe & O. Sigmund: Topology Optimization: Theory, Methods and Applications, Springer.

1	Module name	Module 30: RobOpt II: Robust Optimization II	ECTS 5
2	Courses/lectures	a) Lectures: 2 weekly lecture hours b) Practical: 1 weekly lecture hour	Opti
3	Lecturers	Prof. Dr. Timm Oertel <u>timm.oertel@fau.de</u>	
4	Module coordinator	Prof. Dr. Frauke Liers frauke.liers@math.uni-erlangen.de	
5	Content	 In practice, provided data for mathematical optimizati problems is often not fully known. Robust optimizatio finding the best solution which is feasible for input dat within certain tolerances. The lecture covers advanced of robust optimization in theory and modeling. In part robust network flows, robust integer optimization and approximation are included. Further, state-of-the-art of e.g., "light robustness" or "adjustable robustness" will discussed by means of real-world applications. 	on n aims at ta varying d methods icular, robust concepts, be
6	Learning objectives and skills	 Students will be able to identify complex optimization problems uncertainties as well as suitably model and analyze the corresponding robust optimization problem with the h advanced techniques of robust optimization, learn the handling of appropriate solving techniques a analyze the corresponding results. 	s under e telp of and how to
7	Prerequisites	Recommended: Robust Optimization I	
8	Integration into curriculum	2nd semester	
9	Module compatibility	 Mandatory elective module for MSc Computational an Mathematics, Mandatory elective module for MSc Mathematics in th study "Modelling, Simulation and Optimization" Mandatory elective module for the MSc in Mathematic Economics in the field of study "Optimization and proc management" 	d Applied le field of cs and ess
10	Method of examination	oral exam (15 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Summer semester (not annually) To check whether the course is offered in the current semeste UnivIS univis.fau.de or module handbook of current semester	r, see
13	Workload	Total: 150 h Attendance: 45 h Self-study: 105 h 	

14	Module duration	1 semester
15	Teaching and examination language	English
16	Recommended reading	 Lecture notes, will be published on StudOn at the beginning of the semester.

1	Module name	Module 31: NALIP: Numerical Aspects of Linear and Integer Programming	ECTS 5
2	Courses/lectures	a) Lectures: 2 weekly lecture hoursb) Practical: 1 weekly lecture hour	Opti
3	Lecturers	Dr. Andreas Bärmann andreas.baermann@math.uni-erlangen.de	
4	Module coordinator	Prof. Dr. Alexander Martin alexander.martin@fau.de	
5	Content	 Revised Simplex (with bounds) Simplex Phase I Dual Simplex LP Presolve/Postsolve Scaling MIP Solution Techniques 	
6	Learning objectives and skills	Students are able to explain and use methods and numerical approache linear and mixed-integer programs in practice.	s for solving
7	Prerequisites	Knowledge in linear algebra and combinatorial optimization is recommended.	
8	Integration into curriculum	2nd semester	
9	Module compatibility	 Mandatory elective module for MSc Computational an Mathematics Mandatory elective module for MSc Mathematics in t "Modeling, Simulation and Optimization" Mandatory elective module for MSc Mathematics and in the fields of "Optimization and Process Management 	nd Applied he field of I Economics nt"
10	Method of examination	oral exam (15 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Summer semester (not annually) To check whether the course is offered, see UnivIS univis.fau.de or module handbook of current semester	
13	Workload	Attendance: 45 h Self-study: 105 h Total: 150h	
14	Module duration	1 semester	
15	Teaching and examination language	English	

16	Recommended reading	 V. Chvátal: Linear Programming, W. H. Freeman and Company, New York, 1983 L.A. Wolsey: Integer Programming, John Wiley and Sons, Inc., 1998
----	---------------------	--

1	Module name	Module 34: DiscOpt II: Discrete Optimization II	ECTS 5
C	Courses /lectures	a) Lectures: 2 weekly lecture hours	
2	Courses/lectures	b) Practical: 1 weekly lecture hour	
3	Lecturers	Prof. Dr. Alexander Martin	
		alexander.martin@fau.de	
4	Module coordinator	Prof. Dr. Alexander Martin alexander.martin@fau.de	
5	Content	In this lecture, we cover theoretical aspects and solution strate difficult integer and mixed-integer optimization problems. F show the equivalence between separation and optimization present solution strategies for large-scale optimization prob decomposition methods and approximation algorithms. Fina deal with conditions for the existence of integer polyhedra. discuss applications for example from the fields of engineerin finance, energy or public transport.	egies for irst, we . Then, we lems, e.g., ally, we We also ing,
6	Learning objectives and skills	 Students use basic terms of discrete optimization model real-world discrete optimization problems, detection their complexity and solve them with appropriate matematication. 	ermine thematical
7	Prerequisites	Recommended: Knowledge in linear and combinatorial optimization, discrete optimization I	
8	Integration into curriculum	2nd semester	
9	Module compatibilityMandatory elective module for MSc Computational and Applied Mathematics, Elective module for MSc Mathematics, Elective module for MSc Mathematics and Economics, Elective module for MSc in Data Science, Core/research module MSc Mathematics within "Modeling, simulation, optimization", MSc Mathematics and Economics within "Optimization and process management"		ed mulation, timization
10	Method of examination	oral exam (15 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Attendance: 45 h Self-study: 105 h	

14	Module duration	1 semester
15	Teaching and examination language	English
16	Recommended reading	Lecture notes Bertsimas, Weismantel: Optimization over Integers, Dynamic Ideas, 2005 Conforti, Cornuéjols, Zambelli: Integer Programming, Springer 2014 Nemhauser, Wolsey: Integer and Combinatorial Optimization, Wiley 1994 Schrijver: Combinatorial optimization Vol. A - C, Springer 2003 Schrijver: Theory of Linear and Integer Programming, Wiley, 1986 Wolsey: Integer Programming, Wiley, 2021

1	Module name	Module 39: NumPDE II: Numerics of Partial Differential Equations II	ECTS 5
2	Courses/lectures	a) Lecture: 2 semester hrs/week b) Practical: 1 semester hr/week	NASi
3	Lecturers	Prof. Dr. Eberhard Bänsch <u>baensch@math.fau.de</u>	
4	Module coordinator	Prof. Dr. Günther Grün gruen@math.fau.de	
5	Content	 Classical and weak theory for linear parabolic initial-b value problems (IBVPs) (outline), finite-element method (FEM) for 2nd-order linear par IVBPs (semi-discretisation in space, time discretisation step methods, stability, comparison principles, order o convergence), FEM for semi-linear elliptic and parabolic equations (f and Newton-methods, secondary iterations), higher-order time discretisation, extrapolation, time-s control. 	oundary- abolic n by one- of ixed-point- step
6	Learning objectives and skills	 Students apply algorithmic approaches for models with partial equations and explain and evaluate them, are capable to judge on a numerical method's proper regarding stability and efficiency, implement (with own or given software) numerical m critically evaluate the results, explain and apply a broad spectrum of methods with conforming finite element methods for parabolic problem extending these approaches also to nonlinear problem collect and evaluate relevant information and realize relationships. 	differential ties ethods and a focus on olems, ns,
7	Prerequisites	Recommended: basic knowledge in numerics and numerics of	pde
8	Integration into curriculum	2nd semester	
9	Module compatibility	 Mandatory elective module for MSc in Computationa Applied Mathematics Mandatory elective module for BSc Mathematics Mandatory module for BSc Technomathematik Non-Physics elective module for MSc Physics 	l and
10	Method of examination	written exam (90 minutes) with exercises	
11	Grading Procedure	100% based on written exam	
12	Module frequency	Summer semester (annually)	

13	Workload	Contact hours: 45 hrs Independent study: 105 hrs Total: 150 hrs, corresponding to 5 ECTS credits
14	Module duration	One semester
15	Teaching and examination language	English
16	Recommended reading	 P. Knabner, L. Angermann, Numerical Methods for Elliptic and Parabolic Partial Differential Equations, Springer, New York, 2003. S. Larsson, V. Thomée, Partial Differential Equations with Numerical Methods, Springer, Berlin, 2005.

1	Module name	Module 43: CML: Control, Machine Learning and Numerics	ECTS 10
2	Courses/lectures	a) Lecture: 2 semester hrs/week b) Practical: 3 semester hrs/week	
3	Lectures	Prof. Dr. Enrique Zuazua enrique.zuazua@fau.de Dr. Yongcun Song yongcun.song@fau.de	Opti
4	Module coordinator	Prof. Dr. Enrique Zuazua <u>enrique.zuazua@fau.de</u>	
5	Content	 several topics related to the control of Ordinary Differ Equations (ODE) and Partial Differential Equations (PD including controllability, observability, and some of th fundamental work that has been done in the subject i years. an introduction to Machine Learning, focusing mainly of control techniques for the analysis of Deep Neural as a tool to address, for instance, the problem of Supe Learning. some classical computational techniques related to th of ODE and PDE, and machine learning. 	ential E), e most n recent on the use Networks ervised e control
6	Learning objectives and skills	 Students are able to understand some basic theory on control and machine learn about recent advances on control and machine implement some computational techniques using the specified software and critically evaluate the results, set out their approaches and results in a comprehens convincing manner, making use of appropriate preser techniques. 	e learning. earning. ir own or ible and itation
7	Prerequisites	Basic knowledge of calculus, linear algebra, ODE and PDE. Fam scientific computing is helpful.	iliarity with
8	Integration into curriculum	2nd semester	
9	Module compatibility	Mandatory elective module for MSc Data Science (Simulation and Numerics) Mandatory elective module for MSc in Computational and Ap Mathematics (Opti)	plied
10	Method of examination	Project work with presentation and report	
11	Grading Procedure	50 % presentation and 50 % report	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 75 hrs Independent study: 105 hrs Total: 180 hrs, corresponding to 10 ECTS credits	

14	Module duration	One semester
15	Teaching and examination language	English
16	Recommended reading	 L. Bottou, F. E. Curtis, and J. Nocedal, Optimization methods for large- scale machine learning. SIAM Review, 60 (2) (2018) , 223-311. J. M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, 143, AMS, 2009. I. Goodfellow, Y. Bengio, & A. Courville, Deep Learning. MIT press, 2016. R. Glowinski, J. L. Lions, and J. He, Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach, Encyclopedia Math. Appl., Cambridge University Press, Cambridge, UK, 2008. C. F. Higham, and D. J. Higham, Deep learning: An introduction for applied mathematicians. SIAM Review, 61 (4) (2019), 860-891. J. Nocedal, and S. Wright, Numerical Optimization. Springer Science & Business Media, 2006. D. Ruiz-Balet, and E. Zuazua, Neural ODE control for classification, approximation and transport. arXiv preprint arXiv:2104.05278, (2021). E. Zuazua, Propagation, observation, and control of waves approximated by finite difference methods, SIAM Review, 47 (2) (2005), 197-243. E. Zuazua, Controllability and observability of partial differential equations: some results and open problems, in Handbook of Differential Equations: Evolutionary Equations. Vol. 3. North-Holland, 2006. 527-621.

1	Module name	Module 45: CC: Computational Complexity	ECTS 5
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 1 semester hrs/week	
3	Lecturers	Prof. Dr. Yiannis Giannakopoulos viandisistennakopoulos@fau.de	Opti
4	Module coordinator	Prof. Dr. Yiannis Giannakopoulos <u>yiannis.giannakopoulos@fau.de</u>	
5	Content Learning objectives and	 Potential topics include: P, NP, and NP-completeness Complexity classes and reductions Boolean circuits The polynomial-time hierarchy Space complexity Randomized computation Counting complexity Introduction to the PCP theorem and hardness of appreside to the PCP theorem and hardness of appreside to the PCP theorem and hardness of appreside to the properties of the module, students: Have a rigorous understand of the concept of computations Have knowledge of the fundamental complexity classe (including P, NP, and PSPACE) 	oximation ation and es
6	skills	 Understand the notion of completeness and are able and understand reductions between these classes Are exposed to various formal computation models, in Boolean circuits and randomness 	to design ncluding
7	Prerequisites	Undergraduate-level course in algorithms and/or discrete optimization Basic knowledge of analysis, linear algebra and probability	
8	Integration into curriculum	From 1 st semester	
9	 M. Sc. Data Science (Databased optimization) M. Sc. Mathematics (Modeling, Simulation and Optimization) M. Sc. Mathematics and Economics: (Optimisation and process management) M. Sc. in Computational and Applied Mathematics Also offered as a Mathematics minor ("Nebenfach Mathematik") for: B. Sc. (Computer Science) M. Sc. (Artificial Intelligence) 		ization) d process <") for:
10	Method of examination	Oral exam (30 minutes)	

11	Grading Procedure	Oral exam (100%)	
12	Module frequency	Annually (summer semester)	
13	Workload	Attendance: 45 h Self-study: 105 h	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	 Oded Goldreich. "Computational Complexity: A Conceptual Perspective". Cambridge University Press, 2008. Sanjeev Arora and Boaz Barak. "Computational Complexity: A Modern Approach". Cambridge University Press, 2009 Christos H. Papadimitriou. "Computational Complexity". Addison- Wesley, 1994. 	

1	Module name	Module 46: NMNP: Numerical Methods for Nonsmooth Problems	ECTS 10
2	Courses/lectures	a) Lectures: 4 semester hrs/week	
2	Courses/lectures	b) Practical: 2 semester hrs/week	
3	Lecturers	Prof. Dr. Carsten Gräser	NASi
4	Module coordinator	Prof. Dr. Carsten Gräser graeser@math.fau.de	
5	Content	 Examples of nonsmooth problems involving partial difference equations (PDEs) (e.g. contact of elastic bodies, friction transition, shallow ice glacier models, brittle fracture, Elements of convex analysis (constrained and nonsmominimization problems, variational inequalities) Discretization of nonsmooth problems (e.g. finite elements) Efficient algebraic solvers (active set, relaxation, nonsimultigrid methos) 	ferential n, phase) noth nents, DG) mooth
6	Learning objectives and skills	 Students are familiar with different formulations of nonsmooth pro (minimization, variational inequality, subdifferential in familiar with basic existence and well-posedness resultions capable of discretizing nonsmooth problems using var methods and solving the discrete problems efficiently aware of the intrisic difficulties for analysis and nume from nonsmoothness 	oblems nclusion) Its riational rics arising
7	Prerequisites	Recommended: Introduction to numerical methods for PDEs Recommended: Basic knowledge of functional analysis (but th terminology and results are briefly provided during the lecture	e necessary e)
8	Integration into curriculum	2nd semester	
9	Module compatibility	 Mandatory elective module for MSc in Computational Applied Mathematics Mandatory elective module for MSc in Mathematics 	and
10	Method of examination	written exam (90 minutes) with exercises	
11	Grading Procedure	100% based on written exam	
12	Module frequency	Summer semester (not annually)	
13	Workload	Contact hours: 90 hrs Independent study: 210 hrs Total: 300 hrs, corresponding to 10 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	

	Recommended reading	 I. Ekeland & R. Témam: Convex Analysis and Variational Problems, SIAM
16		 R. Glowinski & JL. Lions & R. Trémolières: Numerical Analysis of Variational Inequalities, North Holland
		Further literature and publications are announced during the
		lecture

1	Module name	Free Elective Module: Scalar Conservation laws	ECTS 5
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Exercises: 0.5 semester hrs/week	
3	Lecturers	Nicola De Nitti	МАрА
3 4 5	Lecturers Module coordinator Content Learning objectives and	 Nicola De Nitti Prof. Dr. Enrique Zuazua enrique.zuazua@fau.de Introduction: applications and examples of conservatio 2. Review of functional analysis: L^p spaces; functions of variation. The method of characteristics: semilinear equations wit coefficients; semilinear equations with variable of quasilinear equations. Entropy solutions: discontinuous solutions of conserv Rankine-Hugoniot condition; entropy and entropy fil solutions; Liu condition; Kruzkhov's theorem; uniqu stability of entropy solutions. Riemann problem: solutions of the Riemann problem fluxes; solutions of the Riemann problem for general fil 6. Front-tracking: construction of front-tracking appr existence of entropy solutions in BV. Vanishing viscosity: viscous approximation; BV a prior existence of entropy solutions in BV. Compensated compactness and applications to co laws: Young measures; Murat's lemma; div-curl lemm theorem; existence of entropy solutions in L^1 \cap L^\ Oleinik's estimate: Oleink's estimate for conservation convex fluxes; uniqueness via Oleinik's estimate. Lax-Oleinik's formula: Legendre's transform; Lax-Oleini 11. Hamilton-Jacobi equations: motivation; viscosity solut posedness of viscosity solutions; equivalence betwe solutions of conservation laws and viscosity solutions of Jacobi equations. Conservation laws on networks: motivation; well-por nonlocal conservation laws; the nonlocal-to-local sir problem. Students are able to: use language and techniques related to scalar conserva especially regarding entropy solutions, Riemann proble approximations, and front tracking aleorithms: 	MApA n laws. of bounded th constant coefficients; ration laws; ix; entropy ieness and for convex ixes. oximations; i estimates; onservation na; Tartar's infty. n laws with k's formula. tions; well- en entropy f Hamilton- condition at sedness of ngular limit ation laws – ms, viscous
6	skills	 work out the examples and applications that acco theory. 	mpany the
7	Prerequisites	Recommended: knowledge of linear algebra and calculus; basic of functional analysis.	knowledge

8	Integration into curriculum	2 nd semester	
9	Module compatibility	 Free elective: M.Sc. Computational Applied Mathematics The course is open also to Ph.D. candidates in the Mathematics and Data Science Departments 	
10	Method of examination	Oral examination (20 minutes)	
11	Grading Procedure	100% based on oral examination	
12	Module frequency	Winter semester	
13	Workload	Contact hours: 35 hrs Independent study: 115 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	 English Chapters 1-10: Bressan, A. Hyperbolic Systems of Conservation Laws: The One-dimensional Cauchy Problem. Oxford, 2000. Coclite, G. M. Scalar Conservation Laws. Lecture Notes, 2020. Dafermos, C. M. Hyperbolic Conservation Laws in Continuum Physics. Springer, 2016. Evans, L. C. Partial Differential Equations. AMS, 2010. Godlewski, E. & Raviart PA. Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, 2021. Godlewski, E. & Raviart PA. Hyperbolic Systems of Conservation Laws. Ellipses, 1990. Holden, H. & Risebro, N. H. Front Tracking for Hyperbolic Conservation Laws. Springer, 2015. LeVeque, R. J. Numerical Methods for Conservation Laws. Birkhäuser, 1992. Mishra, S., Fjordholm, U. S. & Abgrall, R. Numerical methods for conservation laws and related equations. Lecture Notes, 2019. Chapter 11: Bressan, A. Viscosity Solutions of Hamilton-Jacobi Equations and Optimal Control Problems. Lecture Notes, 2011: http://personal.psu.edu/axb62/PSPDF/HJ-Inotes.pdf. Corrias, L., Falcone, M. and Natalini, R. Numerical Schemes for Conservation Laws via Hamilton-Jacobi Equations. Mathematics of Computation. Vol. 64, No. 210 (Apr., 1995), pp. 555-580. Evans, L. C. Partial Differential Equations. AMS, 2010. 	

	Nonlinear Analysis: Theory, Methods & Applications. Volume 50, Issue 4, August 2002, Pages 455-469.
	iapier 12.
	 Andreianov, B. P., Coclite, G. M. & Donadello, C. Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. <i>Discrete & Continuous Dynamical Systems</i>, 2017.
C	napter 13:
	 Coclite, G. M., De Nitti, N., Keimer, A. & Pflug, L. On existence and uniqueness of weak solutions to nonlocal conservation laws with BV kernels. <i>Preprint</i>, 2020.
	 Coclite, G. M. Coron, JM., De Nitti, N., Keimer, A. & Pflug, L. A general result on the approximation of local conservation laws by nonlocal conservation laws: The singular limit problem for exponential kernels. <i>Preprint</i>, 2020
	 Keimer, A. & Pflug, L. Existence, uniqueness and regularity results on nonlocal balance laws. <i>J. Differential Equations</i>, 263(7):4023–4069, 2017.
Le	ecture notes will be distributed via StudOn.